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ABSTRACT 

 

Signaling through the Epidermal Growth Factor Receptor (EGFR) plays an 

important role in both physiological and cancer-related processes. In this work, 

single-molecule microscopy measurements and computational modeling were 

closely integrated to better understand the mechanisms that regulate EGFR 

signaling. Technical improvements were made over the previously described 

Single-Molecule Pull-down (SiMPull) assay to facilitate direct detection of the 

phosphorylation state of thousands of individual receptors, and thereby estimate 

both the fraction of receptors phosphorylated at specific tyrosine residues and 

the frequency of multisite phosphorylation. These improvements enabled the first 

direct detection of multisite phosphorylation on full-length Epidermal Growth 

Factor Receptor (EGFR), and revealed that the extent of phosphorylation varied 

by tyrosine residue (biased phosphorylation). To help in understanding the 

underlying processes giving rise to these observations, a rule-based model for 

EGFR signaling was developed. The model suggested that biased 

phosphorylation could be explained by variations in adaptor protein abundances. 
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This prediction arises from the structure of the model, in which a phospho-site 

that is bound by an adaptor protein is sterically protected from the action of 

phosphatases. Testing model predictions confirmed that overexpression of the 

adaptor protein Grb2 leads to phosphorylation levels enhanced specifically at a 

site where this protein binds. Finally, this model was extended to explore the 

possible mechanisms leading to differential signaling induced by EGFR ligands. 

Model results suggest that ligand-dependent differences in dimer lifetimes lead to 

differential multisite phosphorylation and ubiquitination, which in turn could 

influence signaling kinetics and cellular outcomes. 
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Chapter 1 : Introduction 

 

1.1 Overview 

Complex multicellular organisms, such as the human body, depend on the 

ability of its individual cells to respond in a precise and coordinated fashion to 

stimuli coming either from other cells or from the surrounding environment. The 

transmission of stimuli from the exterior of the cell to its interior occurs through a 

process called signal transduction or cell signaling. For example, binding of 

ligands to membrane receptors starts a cascade of molecular events, such as 

protein phosphorylation and interactions, that propagate the signal to the nucleus 

and eventually lead to cellular responses. Even though the overall picture of 

many signal transduction pathways is known, many critical details remain poorly 

understood. One such detail is the heterogeneity in the activation states of 

molecules participating in signal transduction, a feature that cannot be provided 

by commonly used ensemble techniques. To address this issue, a single-

molecule microscopy technique was improved, allowing for access to this kind of 

information. The work presented here focuses in the study of activation states of 

the Epidermal Growth Factor Receptor (EGFR). Additionally, computational 

models were used to help understanding the underlying processes giving rise to 

the observed distribution of activated states. 

In this introduction, some of the features of the EGFR signaling pathway 

are described, including signal initiation, transmission and regulation. Next, the 

advantages and limitations of ensemble and single-molecule techniques are 
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discussed. Then, some of the previous work relating to modeling of EGFR 

signaling and the current advances in modeling techniques is described.  The 

final part of this section contains the central hypothesis for this work and a 

summary of the results obtained. 

 

1.2 Signaling through the Epidermal Growth Factor Receptor 

1.2.1 Introduction 

The Epidermal Growth Factor Receptor (EGFR) belongs to the 

EGFR/erbB family of Receptor Tyrosine Kinases, which consists of four 

members: EGFR (erbB1, HER1), HER2 (erbB2), HER3 (erbB3), and HER4 

(erbB4). In general, these proteins are single-pass transmembrane proteins with 

an extracellular ligand binding domain and a cytoplasmic tail containing a 

tyrosine kinase domain (Figure 1.1) (Lemmon and Schlessinger, 2010; Yarden 

and Sliwkowski, 2001). As exceptions, HER2 has no known ligand, and HER3 

kinase activity is dependent on initial activation by HER2 (Steinkamp et al., 

2014). Ligand binding to these transmembrane proteins leads to conformational 

changes, receptor homo- and hetero-dimerization, kinase activation and the 

transphosphorylation of multiple cytoplasmic tail tyrosines (Schlessinger, 2002). 

These phosphotyrosines in turn provide sites for the recruitment and activation of 

cytoplasmic proteins, initiating signaling cascades that control numerous cellular 

processes such as gene expression, cell migration and cell division. 

Dysregulation of EGFR signaling, commonly caused by receptor overexpression 
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and/or mutation, has been associated with development and progression of 

cancer. 

 

Figure 1.1. Ligand-induced EGFR dimerization and activation. EGFR ligands 

include EGF, TGF-α and epiregulin. 

In recent years there has been growing evidence that suggests that EGFR 

activation may not only form dimers, but also tetramers and higher-order 

oligomers (Kozer et al., 2014, 2013a). Considering that most of the available 

information about EGFR activation relates to receptor dimerization, this study 

focuses on this form of signal initiation.  

1.2.2 Recruitment of adaptor proteins to activated receptors  

Activated EGFR is capable of recruiting a variety of adaptor proteins that 

have different roles in signal transduction and regulation of cellular outcomes. A 

few examples of these proteins and the specific sites to which they bind is 

displayed in Figure 1.2a.  The first part of this dissertation focuses on the study of 
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the phosphorylation of tyrosines 1068 and 1173, and the recruitment of Grb2 and 

Shc1 to these sites (Figure 1.2b). Proteins recruited to the receptor can be 

phosphorylated either by EGFR or by other kinases such as Src. Grb2 can bind 

to phosphorylated Shc1, and therefore be recruited to the receptor indirectly 

through Shc1 (Batzer et al., 1994). Even though both Y1068 and Y1173 can 

recruit Grb2, either directly or indirectly, and lead to activation of MAPK pathway, 

these sites have distinct additional roles in signaling. For example, pY1173 can 

also recruit and activate PLC-γ and calcium signaling, or recruit the phosphatase 

Shp1, as shown in Figure 1.2a. On the other hand, pY1068 has been shown to 

be essential for efficient recruitment of the E-3 ubiquitin ligase Cbl, which 

ubiquitinates EGFR and mediates its downregulation (Sigismund et al., 2013). 

The interaction of Grb2 and Cbl, and the proximity of their recruitment 

sites, seems to give rise to a cooperative behavior in which the stability of the 

Cbl-Grb2 complex is higher than that of the individual proteins (Figure 1.2c). 

Chapter 5 of this dissertation focuses on the computational modeling of this 

interaction, and how differences in stability of receptor dimers induced by distinct 

EGFR ligands could regulate this interaction, and eventually lead to different 

signaling behavior. 
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Figure 1.2. Recruitment capacity of activated EGFR. Description. (a) 

Representation of some of the adaptor proteins recruited to activated EGFR. 

Based on (Olayioye et al., 2000). (b) Sites and interactions considered for first 

part of this dissertation. (c) Sites and interactions considered in Chapter 5. Cbl 

and Grb2 can interact. 

 

1.2.3 Protein tyrosine phosphatases (PTPs) and EGFR signaling 

Phosphorylation levels are the net result of protein phosphorylation and 

dephosphorylation. A phosphate group can be added at the amino acid residues 

tyrosine, serine or threonine. In the case of phosphorylated tyrosines, in which 

this dissertation focuses, protein tyrosine phosphatases (PTPs) are the 

responsible for removing the phosphate groups from this amino acid.  PTPs play 

a very important role in regulating EGFR signaling, both before and during ligand 

stimulation. For example, in many cell types phosphorylation of receptor tyrosine 

kinases (RTKs) is undetectable in the absence of ligand, but inhibition of PTPs 
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results in important levels of receptor phosphorylation (Jallal et al., 1992; Tarcic 

et al., 2009). This basal phosphorylation, which is thought to originate from short 

interactions between unliganded receptors, is suppressed by constantly active 

phosphatases. Phosphatase activity can be regulated both in time and space. 

For example, while DEP-1 causes receptor dephosphorylation at the membrane, 

PTP1B seems to mainly locate and cause EGFR dephosphorylation at 

endosomes (Tarcic et al., 2009; Eden et al., 2010; Yudushkin et al., 2007). Even 

though most PTPs are known to downregulate EGFR signaling, there are 

examples where a phosphatase can enhance downstream signaling (Yao et al., 

2017). 

The timescale of phosphorylation and dephosphorylation events was 

recently informed by a combination of experimental and computational modeling 

techniques (Kleiman et al., 2011). Kleiman et al. showed that activated EGFR is 

quickly dephosphorylated after a few seconds of adding a fast-binding kinase 

inhibitor. Their modeling results suggest that receptors can go through hundreds 

of phosphorylation/dephosphorylation cycles in the order of a few minutes. Each 

of these events require energy in the form of ATP. A fast dynamic interplay 

between these two processes is essential for allowing the cell to respond in a 

prompt manner to external stimuli and to prevent spurious and excessive 

signaling. 

1.2.4 Regulation of EGFR signaling by endocytosis 

EGFR signaling can be regulated both in time and space. After activation, 

receptors at the plasma membrane are internalized into endocytic vesicles. 
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Recent studies suggest that receptors at endosomes cannot activate MAPK 

pathway, the reason being that Ras, a protein required for MAPK activation, is 

mainly located at the plasma membrane and not in endosomes (Pinilla-Macua et 

al., 2016). The fate of internalized receptors is regulated by a complex network of 

proteins, including components of the ESCRT (endosomal sorting complexes 

required for transport) machinery and members of the Rab GTPase family 

(Sorkin and Goh, 2009; Schwartz et al., 2007). Depending on different factors, 

receptors can be recycled back to the plasma membrane, where they can 

continue signaling, or they can be targeted for lysosomal degradation, causing 

signal downregulation. One of the main factors regulating the fate of EGFR is 

receptor ubiquitination, which in the case of EGFR is mediated by the E3-

ubiquitin ligase Cbl (Levkowitz et al., 1999). Receptor fate is determined by the 

levels and/or type of ubiquitination, which are recognized by Ubiquitin-interacting 

motifs (UIMs) present in proteins involved in receptor sorting (Raiborg and 

Stenmark, 2009; Huang et al., 2013). The level of ubiquitination and receptor fate 

seems to be dependent on ligand type and dose (Roepstorff et al., 2009; 

Sigismund et al., 2013). A more in depth discussion about the literature relating 

to ligand type- and dose-dependent regulation of endocytosis and signaling is 

presented in Chapter 5. 

 

1.3 Comparison between ensemble and single-molecule techniques  

There are two broad types of techniques that can be used to study protein 

interactions and PTMs (post-translational modifications): ensemble and single-
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molecule techniques. In ensemble techniques, the average state of a (generally 

large) group of molecules is measured. Examples of this type of techniques 

include Western blot and ELISA (enzyme-linked immunosorbent assay), which 

measure the relative level of protein interaction- or PTM-state. Single-molecule 

techniques on the other hand are able to distinguish the state of individual 

molecules. Single-molecule microscopy and atomic force microscopy represent 

two of the most used techniques in this category.  

 Both ensemble and single-molecule techniques have their advantages 

and limitations, therefore choice of method depends on different factors such as 

considering the level of information that wants to be obtained and the availability 

of resources, to name a few. In terms of practicality and cost, ensemble 

techniques generally trump. Single-molecule assays generally require costly 

equipment and high-level of expertise. Nevertheless, they often provide 

information otherwise inaccessible. There are many examples of the power of 

single-molecule level measurements to reveal mechanistic details that could not 

be studied using ensemble techniques (Oh et al., 2012; Low-Nam et al., 2011; 

Munsky et al., 2012; Andrews et al., 2008). Recently, Jain et al. developed a 

technique called Single-Molecule Pull-down (SiMPull), which allows to assess the 

composition of individual molecular complexes (Jain et al., 2011). Later in this 

work, a series of modifications to this technique are described. These 

modifications allowed for the quantification of phosphorylation states from 

thousands of individual membrane receptors. 
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1.4 Computational modeling of EGFR signaling 

The vast amount of experimental data available about EGFR activation 

and its downstream signaling events has made it a perfect system for 

mathematical and computational studies (Kholodenko et al., 1999; Blinov et al., 

2006; Shankaran et al., 2012). In spite of this body of knowledge, many of the 

mechanisms involved in EGFR activation and its regulation are not completely 

understood. Modeling of EGFR signaling was generally performed using a series 

of simplifications. For example, even though it is known that different 

phosphorylated residues in EGFR recruit specific adaptor proteins and have 

different functions, these different sites were generally represented as a single 

one, for which multiple adaptor would compete for (Figure 1.3a). These 

simplifications were in most cases justified, not using them could easily result in 

the need of defining hundreds of ordinary differential equations, a process that 

would be error-prone and time-consuming. The relatively recent development of 

tools that allow for rule-based modeling of biochemical networks has made 

possible modeling of signaling systems without the need of employing the 

aforementioned simplifications (Faeder et al., 2009; Smith et al., 2012). 

In this type of modeling, the user define rules containing only the protein 

components that are relevant for the reaction to happen, and the open source 

software does the work of creating a reaction for every possible species that is 

able to participate in the reaction. In the example presented in Figure 1.3, the 

user only needs to define 18 rules total, and the software generates ordinary 

differential equations (ODEs) for the 729 possible different species. In this work, 
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this powerful computational technique was used to include site-specific 

information about EGFR phosphorylation and recruitment of adaptor proteins. 

 

Figure 1.3. Comparison of traditional vs rule-based modeling approaches. (a) 

Traditional models generally lump sites together to prevent the need to define a 

high number of ordinary differential equations (ODEs). (b) Simplified 

representation of rule-based model considering phosphorylation, 

dephosphorylation and reversible adaptor protein binding to six tyrosine residues. 

The three possible states for each site are unphosphorylated, phosphorylated-

free, or phosphorylated-occupied (by adaptor protein).  

 

1.5 Hypothesis 

My central hypothesis is that upon EGFR activation there are subsets of 

receptors having distinct phosphorylation patterns and therefore playing different 
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roles in signal propagation. To test this hypothesis, a series of improvements 

were made to the SiMPull technique, allowing the analysis of phosphorylation 

states from thousands of receptors. Since phosphorylation kinetics is the result of 

a variety of molecular processes, computational modeling was used to aid in the 

quest to understand how the interrelation between these events give rise to the 

observed behavior. 

 

1.6 Summary of Results 

Chapter 2 provides a detailed description of the improvements made to 

the SiMPull technique for quantification of receptor multisite phosphorylation. 

Results show that only a subpopulation of EGFR become phosphorylated under 

what is considered maximal activation conditions and that the extent of 

phosphorylation varies by tyrosine residue. Three-color imaging of EGFR-GFP 

with antibodies directed to two distinct phospho-sites revealed the presence of a 

subset of receptors with simultaneous phosphorylation at the two sites probed. 

Chapter 3 describes the development of a rule-based model for the initial 

steps of EGFR signaling. Particularly, it considers ligand-induced receptor 

activation and the recruitment of the adaptor proteins Grb2 and Shc1 to 

phosphorylated tyrosines 1068 and 1173 in EGFR, respectively. In Chapter 4, 

the model was fine-tuned with experimental data obtained with the improved 

SiMPull technique. Experimental testing of model predictions confirmed that 

adaptor proteins are able to protect the sites to which they bind from 

dephosphorylation, and therefore modulate the phosphorylation patterns 
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observed in vivo. Chapter 5 describes an extended model developed to help 

explain differential signaling induced by EGFR ligands.  The model provides 

testable predictions to help dissect the roles of dimer lifetimes and ubiquitination 

in this differential signaling. Finally, Chapter 6 provides a brief discussion about 

the implications that these results have in the understanding of signaling 

pathways, and some of the possible future directions. 
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Albuquerque, NM 87131 

2.1 Introduction 

The ability of a cell to respond rapidly and specifically to changes in the 

surrounding environment is controlled by protein-protein interactions at the 

plasma membrane and along the signaling cascade. While much is known about 

the biochemical events that govern signaling pathways, this information has 

mostly been derived from population-based measurements that typically average 

over millions of cells and/or proteins. However, there is growing evidence that the 

heterogeneity of the system contributes to how cellular information is processed 

(Lahav et al., 2004; Feinerman et al., 2008; Coba et al., 2009; Spencer et al., 

2009).  To better understand the role of protein phosphorylation heterogeneity in 

directing signaling outcomes, the single molecule pull down (SiMPull) assay was 

adapted to identify the phosphorylation state of individual receptors.   

SiMPull is a powerful technique that allows for interrogation of 

macromolecular complexes at the individual protein level.  Jain et al. first 

demonstrated the ability of this technique to capture macromolecular complexes 

(Jain et al., 2011).  SiMPull samples are prepared in a manner similar to 

IP/Western Blot protocols, but the sample is interrogated using single molecule 
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microscopy. Briefly, cells are lysed and the protein of interest is captured by 

antibodies bound to the coverglass. If the proteins are fluorescently tagged, 

either by fluorescent proteins or subsequent antibody labeling, their presence will 

be quantified by single molecule imaging (Figure 2.1A).  

Here, a modification of SiMPull for the study of phosphorylation patterns of 

transmembrane receptors is described. Traditionally, protein phosphorylation has 

been measured using ensemble techniques, such as Western Blot analysis or 

flow cytometry, which provide information on the relative changes of a protein 

phosphorylation amount.  However, these techniques cannot determine the 

fractions of proteins in a specific phosphorylation state, much less identify when 

an individual protein contains multiple sites of phosphorylation.  While mass 

spectrometry has the potential to detect multisite phosphorylation, the residues of 

interest must be found in the same small peptide that is generated by enzymatic 

digestion (typically 7-35 amino acids) or the protein of interest must be small 

(Swaney et al., 2010; Curran et al., 2015; Brunner et al., 2015). Therefore, new 

techniques are needed to better understand the phosphorylation status of 

individual proteins. Recently, Kim et al. used a modified SiMPull approach, 

termed SiMBlot, to pull-down surface biotinylated proteins and identify 

phosphorylation using denaturing conditions and phosphorylation-specific 

antibody labeling (Kim et al., 2016).  Our approach differs in several significant 

ways from SiMBlot and provides important improvements over previous protocols 

(Jain et al., 2012; Kim et al., 2016), including the reduction of autofluorescence in 

the green spectral channel and a simplified imaging chamber that accommodates 
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higher sample number with lower sample volume. Results demonstrate the 

importance of optimizing antibody labeling and fixation conditions.  To quantify 

receptor phosphorylation, two- and three-color imaging were used to identify 

individual proteins and their corresponding phosphorylation status.  Corrections 

to account for membrane receptor surface expression and steric hindrance in the 

case of dual antibody labeling are described.   

This method was applied to the study of the classical Epidermal Growth 

Factor Receptor (EGFR).  EGFR has 20 tyrosines in its cytoplasmic tail, at least 

12 of which are known to recruit specific adaptor proteins (Schulze et al., 2005). 

The potential for multisite phosphorylation provides a mechanism through which 

the cell might differentially respond to extracellular cues, depending on the extent 

and combination of receptor phosphorylation (Gibson et al., 2000; Salazar and 

Höfer, 2009; Coba et al., 2009; Lau et al., 2011). Results showed that only a 

subpopulation of EGFR become phosphorylated under what is considered 

maximal activation conditions and that the extent of phosphorylation varies by 

tyrosine residue. Multiplex imaging of the GFP-tagged receptors and antibodies 

directed to two distinct phosphotyrosines revealed that multisite phosphorylation 

frequently occurs.  The extent of phosphorylation at individual tyrosines along 

with the existence of multisite phosphorylation has implications for how EGFR 

translates extracellular cues into downstream signaling outcomes.  
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Figure 2.1. SiMPull to quantify protein phosphorylation. (A) Illustration depicting 

overall principle for assessing phosphorylation at the single molecule level using 

GFP-tagged EGFR (EGFR-GFP) as an example. (B) Representative images 

showing raw data (top) and blob-reconstructed localized molecules (bottom). 

CHO-EGFR-GFP cells were stimulated for 5 min with 25 nM EGF at 37°C before 

lysis for SiMPull. Raw images are brightness and contrast enhanced for 

visualization. The EGFR-GFP fits were filtered based on their fit to the 
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microscope point spread function and the GFP-channel used as a mask to create 

the overlay. The number in the bottom right image represents the 

phosphorylation percentage estimated for this field of view.  (C) Hydrophobic 

array for preparation of SiMPull samples. 

 

2.2 Results 

2.2.1 Visualization of individual protein phosphorylation status by SiMPull 

Phosphorylation of EGFR was assayed at the single molecule level using 

the SiMPull concept depicted in Figure 2.1A, where the GFP-tagged receptors 

from cell lysates are immunoprecipitated by antibodies bound to the coverglass 

and subsequently labeled with fluorescently-tagged antibodies detecting 

phosphorylated tyrosines (anti-PY).  Figure 2.1B shows the capture of single 

EGFR-GFP from cell lysate on the coverglass surface and the corresponding 

labeling of phosphorylated EGFR using a pan-phosphotyrosine antibody 

conjugated to Alexa Fluor 647 (anti-PY AF647; PY99 antibody). Individual 

molecules are identified in each image (Figure 2.1B).  Images are then overlaid 

to identify phosphorylated receptors. Colocalization of receptor and PY 

localizations provide an initial estimate of the fraction of phosphorylated 

receptors (Figure 2.1B). Optimization of the experimental process and image 

analysis, including reduction in autofluorescence, corrections for the level of 

receptor surface expression and the appropriate antibody labeling conditions, are 

described in the following sections. 
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2.2.2 Simplified sample chamber increases throughput and reduces sample 

volume 

Jain et al. originally described the use of a fluidic chamber for imaging that 

consisted of 4-6 channels generated between a coverglass and microscope slide 

using epoxy (Jain et al., 2012).  While these types of flow chambers are 

straightforward to produce, the protocol is time consuming (30-60 min) and larger 

volumes (~70 µL) are required to fill each channel. To overcome these 

limitations, a hydrophobic barrier pen was used to create an array of isolated 

sample regions on a coverglass (Figure 2.1C). Rectangular (24x60mm, #1.5) 

coverglasses are treated as described and an array of up to 20 squares can be 

drawn with the hydrophobic ink pen in a matter of minutes.  As little as 10 µL of 

sample is needed to fill each region, which is seven times less than for the 

original flow channels. This is particularly useful considering the high cost of 

fluorescently labeled antibodies and that for some applications sample availability 

may be limited.  Time for sample preparation is also reduced as washing and 

labeling steps are simplified without the need for flowing of buffers through 

channels.   

 

2.2.3 Quenching with NaBH4 reduces background autofluorescence 

It has been previously noted that autofluorescent background is detected 

in the spectral region corresponding to green emitting fluorophores (Jain et al., 

2012). Autofluorescent puncta were also observed in the green spectral channel 

(503-548 nm), which were identified as single GFP molecules in the absence of 
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cell lysate.  Since the experimental approach used relies on GFP to identify the 

location of EGFR on the coverglass, it was important to reduce this background 

to avoid over-counting of receptors.  Incubating the PEG-coated coverglass with 

Sodium Borohydride (10 mg/mL NaBH4 for 4 min) was found to significantly 

reduce the number of background fluorescent molecules (Figure 2.2). Despite 

the improvement in background signal, background measurements were 

routinely acquired for each coverglass preparation to enable background 

correction for each experiment (see Methods for details). 

 

Figure 2.2. Reduction of autofluorescence with Sodium Borohydride (NaBH4). 

(A) Raw images and blob-reconstructions from a typical field of view of a 

PEG/PEG-biotin functionalized surface without (left) and with (right) NaBH4-

treatment. (B) Quantification of the average number of false-positive localizations 
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per field of view in surfaces with or without treatment with NaBH4. For each 

condition N > 12 fields of view were analyzed. Error bars represent mean +/- 

S.E.M. 

 

2.2.4 Antibody optimization is required for accurate phosphotyrosine 

detection 

Since antibodies are used to quantify protein phosphorylation, it is critical 

to optimize the antibody labeling protocol. Figure 2.3 presents the results from 

optimization of anti-EGFR-pY1068. In these experiments, EGF stimulated cells 

were co-treated with a phosphatase inhibitor (pervanadate, PV) to increase the 

amount of receptor phosphorylation.  Incubation of EGFR-pY1068 on ice for 60 

minutes was needed to ensure maximal labeling (Figure 2.3A). Importantly, 

results show that over time the antibody dissociates from EGFR, with ~37% 

reduction after 1 hr at room temperature (Figure 2.3B, no fixative). Complete 

imaging of the sample array can take up to 1 hr, therefore, loss of antibody over 

this period would lead to an underestimate of receptor phosphorylation for 

samples imaged later in time. Multiple fixation protocols to minimize antibody 

unbinding were tested. Results show that fixation with 4% 

Paraformaldehyde/0.1% Glutaraldehyde (PFA/GA) for 10 min stabilized the 

antibody levels for at least 1 hr (Figure 2.3B, PFA/GA). 

To ensure that saturating levels of antibody are used, concentration 

curves for each antibody were generated, using the PFA/GA fixation for optimal 

results.  The example in Figure 2.3C shows the titration curve for anti-EGFR-
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pY1068, which saturates at ~20 g/mL. Consequently, 20 g/mL were used for 

all experiments.  Binding affinity will vary for each antibody and fluorescent-

conjugation may also alter antibody affinity. Therefore, it is necessary to perform 

a binding curve for each antibody and for each new antibody conjugation. 

Another important consideration is the specificity of the antibody for its binding 

site.  Kim et al demonstrated an elegant way to determine specificity by using 

purified proteins with individual tyrosines mutated to alanine. The same EGFR-

pY1068 and EGFR-pY1173 antibodies that they found to have high specificity 

from their in vitro measurements are used in this work (Kim et al., 2016).    

 

Figure 2.3. Optimization of antibody labeling for accurate quantification of 

receptor phosphorylation. CHO-EGFR-GFP cells were pre-treated with 1 mM 

PV for 15 min and stimulated with 50 nM EGF+1mM PV for 5 min at 37°C to 

enhance receptor phosphorylation and interrogated for anti-EGFR-pY1068-
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CF555 labeling. (A) Antibody labeling with anti-pY1068 requires 60 min to reach 

maximal labeling. A 20 g/mL antibody concentration was used. Number of 

receptors analyzed per condition, N>3400. (B) Addition of PFA/GA post-fixation 

prevents loss of antibody over time. N>2700 per condition. (C) Increase in 

labeling as a function of antibody dose. EGFR-pY1068-CF555 saturates at ~20 

g/mL. Antibody was incubated for 1 hour on ice and post-fixed with PFA/GA. 

Resting cells were used as a control for non-specific labeling. N>1700 per data 

point.  Error bars are standard error of measured phosphorylation percentages. 

 

2.2.5 Correction is required to account for non-surface localized receptors 

At any point in time, a fraction of membrane receptors is trafficking 

through intracellular compartments. These internal receptors are not accessible 

during addition of extracellular ligand, but will be captured by the antibody during 

SiMPull sample preparation and result in an underestimate of receptor 

phosphorylation. In CHO-EGFR-GFP cells, a fraction of the receptors are located 

in intracellular compartments (Figure 2.4A, left). To determine the fraction of 

EGFR accessible to ligand, all surface proteins on the CHO-EGFR-GFP cells 

were labeled with membrane-impermeable AF647-NHS Ester (Figure 2.4A, right) 

and used SiMPull to visualize the amount of EGFR-GFP colocalized with AF647.  

By increasing the concentration of AF647-NHS until saturation is achieved, it was 

estimated that ~65% of the receptors are located at the plasma membrane 

(Figure 2.4B).  With this information, measurements were corrected to account 

for only those receptors available to bind ligand. After correction, ~14% of the 
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receptors are phosphorylated at Y1068 after 1 min stimulation with 50 nM EGF 

(Figure 2.4C). While surface labeling of receptors with AF647-NHS ester allows 

for identification of surface proteins, this modification reduced EGF binding (data 

not shown). Therefore, pre-labeling of receptors was not used for the study of 

EGFR activation.  

To validate the correction method, the phosphorylation levels of receptors 

were measured in CHO cells expressing ACP-tagged EGFR.  EGFR localized at 

the plasma membrane was directly labeled using membrane-impermeable CoA-

Atto488 as describe previously (Valley et al., 2015; Ziomkiewicz et al., 2013). 

Cells were then exposed to EGF and probed for EGFR phosphorylation with 

SiMPull, this time using Atto488 as the marker for plasma membrane EGFR. The 

percent of phosphorylated EGFR was similar when comparing the membrane-

localized ACP-EGFR and the membrane-corrected EGFR-GFP samples (Figure 

2.4C). Therefore, the effects of EGF binding to EGFR on the plasma membrane 

can be accurately determined from whole cell lysates using the correction, which 

was applied for the remainder of the results.   



www.manaraa.com

24 
 

 

Figure 2.4. Correction for cellular distribution of receptors. (A) Confocal images 

showing typical distribution of EGFR-GFP in CHO cells (left) and the labeling of 

surface proteins achieved with the AF647-NHS ester (right). (B) Cells were 

incubated with increasing concentrations of AF647-NHS and assayed by SiMPull 

to determine the percentage of EGFR-GFP molecules labeled with AF647. 

Number of receptors analyzed per data point, 850 < N < 1550. (C) Percentage of 

pY1068+ receptors estimated for EGFR-GFP before and after correcting for 

surface expression.  The corrected phosphorylation percentage for EGFR-GFP 

corresponds to the value measured for ACP-EGFR, which only includes plasma 
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membrane localized receptors. N>2400 for each EGFR type.  Error bars are 

standard error of measured phosphorylation percentages. 

 

2.2.6 Extent of phosphorylation varies by tyrosine residue 

SiMPull was used to characterize the kinetics and dose response of EGFR 

activation.  The multi-well hydrophobic array (Figure 2.1C) made it possible to 

efficiently examine a full dose response or time course of activation in a single 

imaging session.  Total EGFR tyrosine phosphorylation (PY) and the 

phosphorylation patterns for two specific tyrosine sites (Y1068 and Y1173) were 

quantified.   Cells simulated for 5 min (Figure 2.5A) with increasing 

concentrations of EGF showed the expected increase in total phosphorylation 

with ligand dose (Figure 2.5A, PY, blue bars). This fraction reached 64% with 50 

nM EGF, a dose that is considered saturating. While both specific tyrosines show 

less phosphorylation than total PY, the fraction of EGFR with phosphorylation at 

Y1173 was consistently higher than at Y1068 (Figure 2.5A). The kinetics of 

phosphorylation between PY, pY1068 and pY1173 are similar (Figure 2.5B). 

These results indicate several important outcomes. First, phosphorylation 

detection by SiMPull is sensitive, capable of detecting receptor phosphorylation 

at low ligand dose and early time points. Second, even under saturating ligand 

conditions, only a fraction of receptors is phosphorylated, reaching a maximum of 

64% with 5 min stimulation. Third, the extent of phosphorylation varies by 

tyrosine residue. The detected phosphorylation levels are not due to limitations in 

antibody labeling, since cells stimulated in the presence of phosphatase 
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inhibitors showed increased receptor phosphorylation (Figure 2.6A).The use of 

high salt (500 mM NaCl) concentration during cell lysis did not change the 

detected phosphorylation, indicating that adaptor proteins are not interfering with 

antibody recognition (Figure 2.6B). 

 

Figure 2.5. The extent of phosphorylation varies by tyrosine residue. (A) Dose 

response curve for CHO-EGFR-GFP cells after 5 min of EGF addition at 37°C. 

Number of receptors analyzed per condition, 800 < N < 1800. (B) Site-specific 

EGFR phosphorylation kinetics. Phosphorylation time course for CHO-EGFR-

GFP cells stimulated with 25 nM EGF at 37°C. N>1800. Error bars are standard 

error of measured phosphorylation percentages. 
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Figure 2.6. Effect of phosphatase inhibition or cell lysate salt concentration  on 

detected phosphorylation levels. (A) CHO-EGFR-GFP cells were stimulated at 

37°C with either 50 nM EGF for 5 min or pre-treated with 1 mM pervanadate (PV) 

for 15 min and then stimulated with 50 nM EGF and 1mM PV (PV + EGF) for 5 

min. Considering that pervanadate treatment induces EGFR phosphorylation that 

may not be restricted to the plasma membrane, no surface correction was 

applied for this figure. Number of receptors per condition, 690 < N < 3400. (B) 

CHO-EGFR-GFP cells were stimulated at 37°C with 25 nM EGF for 1 min and 

protein extraction was performed with either regular lysis buffer containing 150 

mM NaCl (see Methods) or 500 mM NaCl. High NaCl concentrations have been 

shown to promote disruption of interactions between SH2-containing proteins 

and their phosphorylated binding partner sites (Grucza, R. A., et al., 

Biochemistry, 39(33), 10072-10081). 670 < N < 1600. Error bars are standard 

error of measured phosphorylation percentages. 

 

2.2.7 Three-color SiMPull reveals multisite phosphorylation 

The observation that Y1068 and Y1173 have different phosphorylation 

levels suggests that there are subpopulations of receptors with differing 
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phosphorylation patterns. However, examining a single tyrosine site at a time 

cannot address the coincidence of phosphotyrosines.  To assess the potential of 

multisite protein phosphorylation, simultaneous three-color SiMPull imaging was 

developed. To test whether receptors phosphorylated at Y1068 were also 

phosphorylated at other tyrosine residues, receptors were co-labeled with anti-

pY1068 and anti-PY antibodies. When labeling a single protein with two or more 

antibodies, the effects of steric hindrance must be considered.  In this case, 

labeling first with anti-pY1068 followed by anti-PY did not alter PY levels (Figure 

2.7A).  However, labeling with anti-PY first did cause a loss of pY1068 signal 

(Figure 2.7B). Therefore, the experiments were performed with sequential 

labeling, anti-pY1068 followed by anti-PY. As before, the addition of EGF 

resulted in increased phosphorylation, with the PY antibody showing more 

labeling than the site-specific antibody (Figure 2.8A,B) and the presence of multi-

phosphorylated receptors was observed in the three-color images (Figure 2.8A, 

white circles). Figure 2.8B shows quantification of the three-color colocalization, 

which revealed that ~12% of EGFR were labeled by both antibodies 

(pY1068+PY, orange bar). Importantly, nearly 76% of the receptors 

phosphorylated at Y1068 were co-labeled with PY.  Therefore, multisite 

phosphorylation is a prevalent outcome in EGFR activation. 
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Figure 2.7. Assessment and correction of steric hindrance in sequentially 

incubated antibodies for 3-color SiMPull. (A) Evaluation of steric hindrance 

between anti-pY1068-CF555 and anti-PY-AF647 (PY) antibodies. CHO-EGFR-

GFP cells were stimulated with 25 nM EGF for 5 min at 37°C and EGFR 

phosphorylation quantified using 3-color SiMPull.  Labeling with anti-pY1068 first 

did not reduce subsequent labeling by anti-PY. However, a reduction in pY1068+ 

receptors is seen when the labeling order is reversed. Number of receptors 

analyzed per measurement, N>800. n.s. not significant, P = 0.5187. (B) 

Evaluation of steric hindrance between anti-pY1068-CF555 and anti-pY1173-

CF640R antibodies. Cells were stimulated as described in (A) and receptor 
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phosphorylation assayed by 3-color SiMPull. A reduction in labeling was 

observed for the antibody that is applied second in the labeling sequence. N>780 

per measurement. (C) Diagram describing estimation of correction factor (α) to 

calculate actual fraction of receptors with dual phosphorylation (D’). The 

observed reduction in labeling with Antibody 1 alone (left bar) as compared to 

Antibody 1 following Antibody 2 (right bar) indicates the level of steric hindrance.  

From this information, the correction factor can be calculated. (D) Validation of 

the correction factor by exchanged labeling order. After applying the correction 

factor (“Corrected” bars), the percentage of pY1068+pY1173+ receptors is 

similar.  Error bars are standard error of measured phosphorylation percentages. 
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Figure 2.8. SiMPull reveals EGFR multisite phosphorylation. (A) Representative 

3-color SiMPull image showing detection of EGFR-GFP (cyan), where receptors 

positive for PY labeling appear purple and white circles mark receptors labeled 

for both PY and pY1068. This image does not contain receptors labeled with 

pY1068 alone. Cells were treated with 25 nM EGF for 5 min. (B) Quantification of 

single and multi-phosphorylation in EGFR.  Number of receptors analyzed per 

condition, N>500 for resting condition and N>840 for EGF condition. (C) Step-

photobleaching analysis of multi-phosphorylated EGFR-GFP from (B). The 

majority (98%) of diffraction limited GFP spots show single-step bleaching, 

consistent with the pull-down of receptors as monomers. Inset shows example 
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GFP-intensity trace of a multi-phosphorylated EGFR-GFP. (D) Percentage of 

Y1173 phosphorylation in overall population of surface receptors compared to 

that in pY1068+ receptors. N>780 for EGFR and N=51 for pY1068 EGFR. *** P < 

0.001. (E) Multisite phosphorylation is also observed at lower EGF dose.  Cells 

stimulated for 5 min with indicated EGF dose. 970 < N < 1700 per condition.  

Error bars are standard error of measured phosphorylation percentages. 

To ensure receptors detected as multi-phosphorylated were individual 

receptors labeled with both antibodies rather than two nearby labeled receptors 

detected as one in a diffraction-limited spot, step-photobleaching analysis was 

performed (Figure 2.8C). Analysis showed that the majority of doubly labeled 

receptors (~98%) were associated with a single EGFR-GFP molecule (Figure 

2.8C, right). It is important to note that the number of GFP spots demonstrating 

two-step photobleaching increased as the sample density increased (data not 

shown). Therefore, a pulldown protein density in the range of 0.04-0.08/μm2 is 

recommended.  Alternatively, photobleaching traces can be performed in each 

measurement to exclude those spots showing more than one-step 

photobleaching. 

With the knowledge that the majority of pY1068+ receptors are also 

phosphorylated in at least one other tyrosine residue, the pairwise 

phosphorylation of Y1068 and Y1173 was examined. In contrast to dual labeling 

with pY1068 and PY (pan-pTyr) antibodies, the close proximity of these two 

tyrosines did result in steric hindrance of antibody binding. This is seen as a 

reduction in labeling when the antibodies are applied second as compared to first 
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(Figure 2.7B). The reduced labeling efficiency measured in sequential labeling 

was used to correct for steric blocking (see Figure 2.7C,D and Methods). Results 

show that approximately 50% of the pY1068+ receptors are co-phosphorylated at 

Y1173. This is an enrichment of approximately two-fold as compared to pY1173+ 

in the total EGFR population (Figure 2.8D). Stimulation of cells with lower doses 

of EGF also resulted in multisite EGFR phosphorylation (Figure 2.8E). Notably, at 

1 nM EGF, multi-phosphorylation is already considerable within the site-specific 

subpopulations, with 58 +/- 14% of pY1068+ receptors and 29 +/- 8% of 

pY1173+ receptors being co-labeled with PY. Therefore, multisite 

phosphorylation is not merely a consequence of saturating ligand conditions. The 

use of a three-color imaging scheme to correlate phospho-antibody labeling 

directly with GFP-tagged receptors was critical, due to the relatively high non-

specific binding of the antibodies (Figure 2.9A,B). In the absence of the GFP 

channel to remove the non-specific binding, the values for dual labeling are 

underestimated (Figure 2.9C,D). These results show that SiMPull, when 

performed using the improvements described here, can be used to quantify the 

extent and coincidence of phosphorylation at multiple tyrosines.  
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Figure 2.9. Importance of multi-color imaging for accurate quantification of 

phosphorylation percentages. (A) Representative images displaying raw data 

and blob-reconstructed localized molecules from a 3-color SiMPull experiment. 

CHO-EGFR-GFP cells were stimulated with 25 nM EGF for 5 min at 37°C and 

assayed using anti-pY1068-CF555 (yellow) and anti-pY1173-CF640R (pink) 

antibodies. (B) Quantification of total number of pY1068 and pY1173 

localizations per field of view when only those two channels are examined. 

EGFR-GFP channel was ignored for this quantification to emulate a 2-color 

SiMPull experiment. (C) Quantification of total number of pY1068 and pY1173 

localizations per field of view using 3-color SiMPull. Here, the EGFR-GFP 

channel was used to identify pY1068 and pY1173 localizations overlapping with 

EGFR molecules, removing contributions from non-specific antibody binding. (D) 

In the absence of the EGFR-GFP channel to identify receptor locations, the 2-
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color SiMPull underestimates protein multi-phosphorylation. Number of receptors 

per condition, N>2400. Error bars are standard error of measured 

phosphorylation percentages. 

 

2.3 Discussion 

In this Chapter, a series of modifications to SiMPull that allow this 

technique to obtain quantitative information about multiple post-translational 

modifications (PTMs) at the single-protein level were described. SiMPull was 

used to monitor EGFR phosphorylation patterns, quantify subpopulations of 

phosphorylated receptors, and directly observe the existence multisite 

phosphorylation. This approach holds distinct advantages over other techniques.  

Detailed information on protein PTMs is not accessible by traditional biochemical 

methods that can only determine relative changes from an average of the 

population.  While mass spectrometry has the potential to detect multisite 

phosphorylation, the residues of interest must be found in close proximity 

(Swaney et al., 2010).  In SiMBlot, which is also a single molecule approach to 

detecting PTMs, surface proteins are first biotinylated and then pulled-down via 

streptavidin-coated surface, rather than by a specific antibody (Kim et al., 2016). 

The SiMPull method is not restricted to surface proteins and is therefore 

compatible with the interrogation of intracellular proteins.  PTMs other than 

phosphorylation can also be studied as long as a suitable antibody is available. 

Thus, detection of PTMs by SiMPull enables measurements that were previously 

difficult to perform.   
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In addition to its advantages, SiMPull has a number of caveats that must 

be considered to ensure rigorous quantification.  As with any antibody-dependent 

technique, the affinity and specificity of the antibody must be determined.  

Results showed that it is important to establish proper concentrations and 

labeling times for each antibody used, as well as the importance of post-fixation 

to prevent antibody dissociation during imaging.  In addition, directly labeling the 

primary antibody with the fluorophore eliminates the need for secondary 

antibodies, which may add additional labeling efficiency artifacts and restrict 

options due to the limited availability of species used to generate primary 

antibodies. The phosphotyrosines probed in EGFR are located in an intrinsically 

disordered region of the C-terminal tail, therefore these sites are likely to be more 

accessible to antibodies than if they were located in structured regions. If the 

PTMs of interest are found in structured regions, a protein denaturation step may 

be used (Kim et al., 2016). Steric hindrance of two or more antibodies binding to 

the same protein is another possible complication.  Steric hindrance was found in 

the case of co-labeling pY1068 and pY1173. However, a simple control 

experiment and mathematical correction are described to avoid undercounting of 

dual-phosphorylated receptors.  For future studies, the use of fluorescently-

conjugated Fab fragments may reduce the impact of steric hindrance. It is worth 

noting that while detailed information on the phosphorylation status of individual 

proteins status is obtained, the cell-to-cell variability is lost with SiMPull.   

Using SiMPull, EGFR phosphorylation patterns were quantified. The new 

level of detail afforded by SiMPull has provided several important insights. First, 
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only a fraction of EGFR was found to be phosphorylated, even under saturating 

ligand conditions. Second, the phospho-EGFR is further divided into 

subpopulations that vary in the extent of phosphorylation at individual tyrosine 

residues.  Third, the use of three-color imaging allowed to probe for multisite 

phosphorylation.  Comparisons of pY1068 with a pan-phosphotyrosine antibody 

revealed that many receptors are indeed phosphorylated at more than one 

tyrosine simultaneously.  Strikingly, the majority of pY1068+ receptors are co-

labeled with PY antibody and ~50% of pY1068+ are also positive for pY1173. 

These results are in contrast to recent SiMBlot studies of EGFR concluding that 

multisite phosphorylation was not a common occurrence. These differences may 

be explained by optimization of our labeling protocol that provided the sensitivity 

needed to detect multisite phosphorylation, including the use of fluorescently-

conjugated primary antibodies, labeling under saturating antibody conditions and 

post-fixation to prevent antibody dissociation. 

Notably, our results are consistent with previous work indicating that 

multisite phosphorylation is important in the efficient recruitment of certain 

adaptor proteins to activated EGFR (Sigismund et al., 2013; Fortian and Sorkin, 

2014).  The existence of multisite phosphorylation holds significant functional 

implications. By modulating protein phosphorylation patterns, both single- and 

multisite combinations, downstream signaling pathways may be differentially 

activated and lead to biased signaling.  Consistent with this idea, it has been 

shown that biased signaling arises with different ligand types and doses, as well 
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as with the relative abundance of receptors and their signaling partners (Chen et 

al., 2009; Wilson et al., 2012; Freed et al., 2017; Wolf-Yadlin et al., 2006).  

Interestingly, dual Y1068/Y1173 phosphorylation occurred about two-

times more frequently than expected if these sites were independent of each 

other, suggesting positive correlation between the sites.  Mechanistically, this 

enrichment could be a result of either long-lived receptor interactions or repeated 

dimerization events.  If dimer lifetimes are sufficiently long, then phosphorylation 

of multiple sites could happen in a single dimerization event, suggesting that 

phosphorylation occurs in a semi-processive manner. Alternatively, if a receptor 

undergoes many dimerization and dissociation events, then these repeated 

interactions could result in the phosphorylation of a unique tyrosine in each 

encounter. This would be similar to quasi-processive phosphorylation as 

described for ERK (Aoki et al., 2011).  Experimental evidence exists to support 

each of these mechanisms. Both long-lived and transient EGFR dimerization has 

been observed on living cells, with dimer lifetimes dependent on ligand 

occupancy (Low-Nam et al., 2011).  Recent work from the Lemmon group has 

shown that high and low affinity ligands induce distinct dimer structures, where 

low affinity ligands lead to less stable dimers and differential signaling outcomes 

(Freed et al., 2017). Oncogenic signaling by EGFR mutants has been shown to 

be driven by enhanced dimerization and increased catalytic activity that could 

amplify multi-phosphorylation (Kim et al., 2012; Shan et al., 2012; Valley et al., 

2015; Zhang et al., 2006). 
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Interplay between receptors and the membrane environment has also 

been shown to affect the efficiency of EGFR encounters (Low-Nam et al., 2011; 

Chung et al., 2010). Therefore, the frequency of dimerization and the duration of 

dimer lifetimes may serve as a kinetic proofreading mechanism, regulating the 

EGFR phosphorylation patterns and dictating cellular outcome. Additionally, 

adaptor protein binding and phosphatase activity likely play roles in 

phosphorylation extent. For example, Capuani et al have shown that Grb2 and 

Cbl can protect Y1045/Y1068 from dephosphorylation (Sigismund et al., 2013). 

These mechanisms are not mutually exclusive and may be more or less relevant 

depending on the cellular contexts. Therefore, it would be expected that 

phospho-EGFR patterns will be modulated by differences in ligand dose, ligand-

dependent dimer lifetimes, membrane architecture and adaptor protein 

abundance. The contributions that these mechanisms have in EGFR and other 

signaling pathways, remain unclear. The unique datasets provided by SiMPull, 

combined with other experimental and computational modeling tools, should 

prove useful in addressing these types of questions. 
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2.4 Methods 

2.4.1 Cell lines and reagents 

CHO cells expressing GFP-tagged (Brock et al., 1999; Lidke et al., 2004) 

or ACP-tagged EGFR (provided by Dr. Donna Arndt-Jovin) were cultured in 

DMEM supplemented with 10% FBS, penicillin–streptomycin and 2 mM L-
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glutamine (Thermo Fisher Scientific). ACP-tagged EGFR was as described in 

(Valley et al., 2015; Ziomkiewicz et al., 2013) with the exception that a shortened 

16 aa sequence was introduced at the EGFR N-terminus (George, 2006). EGF, 

Protease and Phosphatase Inhibitor Cocktail, Alexa Fluor 647 NHS Ester, and 

NeutrAvidin were purchased from Thermo Fisher Scientific. CoA 488 and ACP 

Synthase were purchased from New England Biolabs. N-(2-aminoethyl)-3-

aminopropyltrimethoxysilane was purchased from United Chemical Technologies 

(#A0700). Sodium bicarbonate and sodium borohydride were purchased from 

EMD Millipore (#SX0320-1, #SX0380-3). mPEG-Succinimidyl Valerate (MPEG-

SVA-5000-5g) and biotin-PEG-Succinimidyl Valerate (Biotin-PEG-SVA-5000-

500mg) were from Laysan Bio. Biotinylated anti-EGFR antibody (E101) was 

obtained from Leinco Technologies. Antibodies in carrier-free buffer were 

purchased from Cell Signaling Technologies:  EGFR pY1068 (clone 1H12, 

2236BF) and EGFR pY1173 (clone 53A5, 4407BF). Monoclonal antibody pre-

labeled with AF647 to detect pan-tyrosine phosphorylation (PY99 antibody, sc-

7020 AF647) was purchased from Santa Cruz Biotechnology. Mix-n-Stain CF555 

and CF640R antibody labeling kits were purchased from Biotium Inc. 

Paraformaldehyde and glutaraldehyde were purchased from Electron Microscopy 

Sciences. 

  

2.4.2 Labeling of antibodies 

Carrier-free antibodies (50 μg at 0.5-1 mg/mL per reaction) were labeled 

using Mix-n-Stain antibody labeling kits following the manufacturer’s instructions. 
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Briefly, the labeling reaction was carried out for 30 min at room temperature and 

antibodies were centrifuged using the ultrafiltration vial provided to remove the 

unconjugated dye. Antibodies were resuspended in PBS and stored at 4 °C. The 

labeling efficiency achieved was between 2.7-4.4 dyes/antibody.  

 

2.4.3 Cell treatment and lysate preparation 

CHO-EGFR-GFP cells were plated overnight in 60 mm tissue culture 

dishes at 800,000 cells/dish and CHO-ACP-EGFR cells in 24-well plates at 

50,000 cells/well. For ACP labeling, CHO-ACP-EGFR cells were washed with 

serum-free DMEM medium (SFM), incubated with ACP labeling solution (SFM, 

10 mM MgCl2, 4 μM CoA 488 and 1 μM ACP) for 20 minutes at 37°C and 

washed three times with SFM previous to stimulation. Cells were washed in 

Tyrode’s solution (135 mM NaCl, 10 mM KCl, 0.4 mM MgCl2, 1 mM CaCl2, 10 

mM HEPES, 20 mM glucose, 0.1% BSA, pH 7.2) and treated with 25 nM EGF or 

Tyrode’s solution alone (resting cells) at 37°C. At the indicated time points,  cells 

were placed on ice, washed one time with cold PBS followed by addition of lysis 

buffer (1% IGEPAL CA-630, 150 mM NaCl, 50 mM Tris pH 7.2) containing 

Protease and Phosphatase Inhibitors. Cell lysates were collected using cell 

scrapers (Greiner Bio-One North America, #541070), transferred to fresh tubes 

on ice and vortexed every 5 min for a total of 20 min. Lysates were centrifuged at 

16,000× g for 20 min at 4 °C and the supernatant was transferred to a new tube 

and stored at -80 °C. For experiments involving treatment of cells with 

phosphatase inhibitors, cells were pre-treated for 15 min with a Tyrode’s solution 
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containing 1 mM pervanadate (PV) followed by incubation for 5 min in a solution 

with 50 nM EGF and 1 mM PV. A stock solution of 30 mM PV was prepared 

before each experiment by mixing equimolar concentrations of hydrogen 

peroxide and activated sodium orthovanadate that was incubated in the dark for 

at least 15 min before use. 

 

2.4.4 Fabrication of hydrophobic arrays and surface functionalization 

Coverglasses (24x60mm, #1.5; Electron Microscopy Sciences, #63793) 

were Piranha-cleaned(Labit et al., 2008) and placed in a coverglass holder 

(Fisher Scientific, #08-817). Coverglasses were sequentially sonicated in 

Methanol and Acetone for 10 min each, and in 1M KOH for 20 min using a bath 

sonicator (Branson Ultrasonics, B1200R-1). These solutions were stored in 

polypropylene 50 mL tubes (VWR, #89401-564) and reused up to five times. 

Coverglasses were rinsed with Milli-Q water two times, dried by quickly passing 

them multiple times over the flame of a Bunsen burner using metal tweezers and 

placed in a dry coverglass holder. A solution containing 76 mL of methanol, 4 mL 

of acetic acid and 0.8 mL of aminosilane (N-(2-aminoethyl)-3-

aminopropyltrimethoxysilane) was prepared in an Erlenmeyer flask, immediately 

poured into the coverglass holder and incubated at room temperature for 10 min 

in the dark, followed by  2 min sonication and another 10 min incubation in the 

dark. Coverglasses were next washed with methanol for 2 min, rinsed and 

washed for 2 min with water, and dried in the dark. 
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Treated coverglasses were placed on top of a parafilm-covered 

coverglass containing a guide pattern, which was used as reference to draw the 

Sample Array with a hydrophobic barrier pen (Vector Laboratories, #H-4000). Ink 

was allowed to dry for at least 5 min before coverglasses were placed in a 

humidified chamber (empty tip rack with 50 mL of water; USA Scientific #1111-

2820). For surface functionalization, 50 mg of mPEG-Succinimidyl Valerate, 1.3 

mg of biotin-PEG-Succinimidyl Valerate and 200 µL of freshly prepared 10 mM 

sodium bicarbonate were mixed thoroughly by pipetting up and down, centrifuged 

for 1 min at 10,000 g at room temperature and immediately applied to the 

SiMPull array (10-13 uL per region). After incubating for 3-4 hours in the dark 

inside the humidified boxes, arrays were washed by sequential 30 sec 

submersions into three water-filled 250 mL glass beakers. Coverglasses were 

dried with nitrogen gas, stored in pairs (back to back) inside 50 mL tubes, which 

were filled with nitrogen gas before closing and sealing with Parafilm. 

Coverglasses were stored in the dark at -20°C for up to a week before use.  

 

2.4.5 Labeling and quantification of surface receptors 

CHO-EGFR-GFP cells grown in 24-well plates were placed on ice and 

washed 3 times with cold PBS. AF647-NHS Ester was dissolved at the indicated 

concentrations in PBS. Cells were incubated with this solution for 30 min at 4°C 

with gentle agitation, washed 3 times with cold PBS and subjected to cell lysis. 

The percent of receptors labeled with AF647 across different dye concentrations 

was assessed with SiMPull.  To estimate the percent of receptors at the cell 
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surface the AF647-labeling curve was fitted to a biexponential decay curve in its 

increasing form using the ‘fit’ function in MATLAB: y = C1 (1 - e-ax) + C2 (1 - e-bx), 

where y is the % of AF647-labeled receptors, x is the concentration of reactive 

AF647-NHS ester used, and a>0, b>0, C1 and C2 are coefficients to be fitted. 

The sum of the coefficients C1 and C2 represent the asymptote of the curve and 

an approximation of the fraction of receptors at the cell surface. 

 

2.4.6 Single-Molecule Pulldown and phospho-site labeling 

T50 (10 mM Tris pH 8.0, 50 mM NaCl) and T50-BSA (T50 with 0.1 mg/mL 

BSA) solutions were prepared and stored for up to a month at room temperature. 

SiMPull arrays were equilibrated at room temperature and placed on a TC100 

plate lined with Parafilm. Each region of the SiMPull array was treated with 10-15 

µL of a 10 mg/mL sodium borohydride (NaBH4)/PBS solution for 4 min at room 

temperature and washed 3 times with PBS. SiMPull regions were then incubated 

with a 0.2 mg/mL NeutrAvidin/T50 solution for 5 min and washed three times with 

T50, followed by incubation with a 2 µg/mL biotinylated anti-EGFR/T50-BSA 

solution for 10 min and washed three times with T50-BSA.  

The plate containing the SiMPull array(s) was kept on ice during sample 

preparation. Lysates were diluted in cold T50-BSA with Protease and 

Phosphatase Inhibitors (T50-BSA/PPI), vortexed at medium speed, and added to 

the SiMPull array. After 10 min incubation, the lysates were removed and the 

SiMPull regions washed 4 times with cold T50-BSA/PPI. To determine 

appropriate dilution factor, the density of pulldown receptors as a function of 
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lysate concentration was first assessed to achieve a pulldown density 0.04-

0.08/μm2. Antibodies were diluted in cold T50-BSA/PPI, incubated for 1 hr, 

washed 6 times with cold T50-BSA for a total of 6-8 minutes, and washed twice 

with cold PBS. Immediately after, antibodies were fixed for 10 min with a 4% 

PFA/0.1% GA solution (paraformaldehyde/glutaraldehyde) and washed 2 times 

with 10 mM Tris (pH 7.4)/PBS for a total of 10 min to inactivate fixatives.  For 3-

color SiMPull experiments the same antibody incubation and fixation procedure 

was performed for the second antibody. Tris solution was replaced by T50-BSA 

and the SiMPull array was equilibrated to room temperature before proceeding to 

imaging. 

 

2.4.7 SiMPull imaging 

Imaging of SiMPull samples was performed using an inverted microscope 

(Olympus America, model IX71) equipped with a 150×/1.45 NA oil-immersion 

objective for Total Internal Reflection Fluorescence Microscopy (Olympus 

America, UAPON 150XOTIRF) and a three-dimensional piezostage (Mad City 

Labs, Nano-LPS100). Excitation of CF640R- or AF647-labeled antibodies was 

done using a 642-nm laser (Thorlabs, HL63133DG), CF555-labeled antibodies 

using a 561-nm laser (Coherent Inc, Sapphire 561-100 CW CDRH), and of GFP- 

and CoA 488-tagged receptors using a 488-nm laser (Spectra Physics, Cyan 

100mW). All lasers were set in total internal reflection configuration, and laser 

powers were adjusted to prevent photobleaching of the sample at the timescale 

of the image exposure time (300 msec). Sample illumination and emission were 
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filtered using a quad-band dichroic and emission filter set (Semrock, 

LF405/488/561/635-A-000). Emission light was separated into four channels 

using a quad-view multichannel imaging system (Photometrics, model QV2) 

equipped with the appropriate dichroics (Chroma, 495 DCLP, 565 DCLP, 660 

DCLP) and emission filters (Semrock, 685/40 nm, 600/37 nm, 525/45 nm). 

Emission light was collected with an electron-multiplying charge-coupled device 

(EMCCD) camera (Andor Technology, DU-897E-C50-#BV) with EM gain set to 

200. 

Each channel was 256 x 256 pixels, with a pixel size of 106.7 nm. 

Photobleaching and bleed through were prevented by controlling the laser 

shutters and microscope stage through a MATLAB script to sequentially excite 

and acquire the different fluorophores (642-nm laser first, 488-nm laser last). A 

minimum of 20 regions of interest were acquired per condition. For quantification 

of step photobleaching of EGFR-GFP molecules, a 100 frame time series (300 

msec exposure time) was acquired after imaging of the other two channels. 

 

2.4.8 Quantification of Receptor Phosphorylation 

All image processing was performed using MATLAB together with the 

MATLAB toolbox for image-processing DIPImage (Delft University of 

Technology) (Hendriks et al., 1999) and all software is available upon request. 

The location of emitters in each channel was calculated using graphics processor 

unit (GPU) computing as previously described (Smith et al., 2010). Fits in the 

GFP channel were filtered based on the quality of the fit to the point spread 
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function to reduce the chances of detecting multiple receptors in close proximity 

as a single molecule. Image registration was performed as previously described 

(Schwartz et al., 2017). In this work, the root mean square error for image 

registration was <10 nm. For visualization purposes, Gaussian blob 

representations of the fluorophore localizations were generated. A receptor was 

considered to be phosphorylated when the localization centers of the receptor 

and labeled antibody were at a distance <106.7 nm (within 1 pixel). 

Phosphorylation percentages were calculated as 100*(NPhos)/(NGFP-NBG) 

where NPhos is the number of receptors identified as phosphorylated, NGFP is the 

number of observed single molecules in the GFP channel and NBG is the non-

specific background rate in the GFP channel.  

The number of GFP localizations was calculated by subtracting 

background spots and accounting only for surface receptors as follows: NGFP = 

(NLOC-NBG )*SR, where NLOC is the total number of emitters localized, NBG is the 

expected number of background emitters in the area imaged, and SR (surface 

ratio) is the fraction of receptors located at the cell surface. The density of 

background emitters was quantified for each SiMPull array and used for 

background correction of samples in that array. For 3-color SiMPull experiments 

where steric hindrance between sequentially incubated antibodies was observed 

(i.e. pY1068-pY1173 detection), estimations of dual phosphorylation were 

corrected to account for this hindrance as explained in Figure 2.7. 
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2.4.9 Statistical Analysis 

Based on the consideration that the phosphorylation state of each 

receptor analyzed has the properties of a Bernoulli trial, standard errors (SE) of 

phosphorylation measurements were calculated as for sample proportions in a 

binomial distribution: SE= p(1-p)/n, where p is the fraction of receptors 

phosphorylated and n is the total number of receptors. The condition np>10 (with 

the exception of Figure 2.8E, np>5) and np(1-p)>10 was ensured to be met to 

allow this approximation to be adequate. Two-sample Z-test (two-tailed) was 

used to estimate p-values (LeBlanc, 2004).  

 

2.4.10 Step-photobleaching Analysis 

For step-photobleaching analysis of multi-phosphorylated receptors, the 

average fluorescence intensity of the area (200x200 nm) surrounding each of 

these EGFR-GFP molecules was quantified and plotted for the duration of the 

time series. Intensity plots were manually analyzed and the number of 

photobleaching steps was quantified. For a small fraction of the emitters, the 

number of molecules could not be reliably counted because either they 

photobleached too quickly (<2 frames) or did not photobleach during the duration 

of the movie, and therefore were excluded from the analysis. 
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Chapter 3 : Building a rule-based model of the initial events of 
EGFR signaling 

 

3.1 Introduction 

A number of rule-based models for EGFR signaling have been developed 

in recent years, each varying in complexity and the level of mechanistic details 

included (Blinov et al., 2006; Creamer et al., 2012; Kozer et al., 2013b). The 

refinement of these models was mostly done using techniques that provide 

ensemble or average quantitative measurements. The kind of information that 

the improved SiMPull technique (described in Chapter 2) provides was not 

available in the past, and therefore this model will be the first one whose 

refinement is performed using this type of data. As described in following 

chapters, coupling of this type of modeling and experimental data is providing 

new insights about the kinetics of the molecular events involved in EGFR 

activation. 

The following sections present a detailed description of the development 

of a model that simulate the EGF-dependent activation of EGFR, phosphorylation 

of tyrosines 1068 and 1173 in the cytoplasmic tail of the receptor and the 

recruitment of adaptor proteins Grb2 and Shc1 to these sites (Figure 3.1). This 

model was developed using the BioNetGen language (BNGL) for rule-based 

modeling (Faeder et al., 2009). The model consists of 9 reaction rules and 12 

parameters. BioNetGen software was used to generate the reaction network from 

these rules. The resulting reaction network consists of 39 molecular species and 
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183 unidirectional reactions. The network was simulated with the deterministic 

simulation engine used by BioNetGen. 

In the next section, two example rules are presented to briefly describe the 

basic nomenclature in BioNetGen language. A more detailed description of 

BioNetGen language can be found in (Faeder et al., 2009). This is followed by a 

list of the reaction rules used for this model together with a brief description. 

Lastly, some of the key parameter values used in this model are enlisted, and the 

source(s) of these values, if available. A complete list of the parameter values 

and the file encoding the complete model can be found in Appendix B. 

 

 

Figure 3.1. Graphical description of model. EGF-bound receptors can dimerize 

and phosphorylated each other. This model includes the phosphorylation of 

Y1068 and Y1173, and the recruitment of Grb2 and Shc1 to those respective 

sites. 
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3.2 Model development, Results and Discussion 

3.2.1 Example reaction rules 

Example Rule 1. Reversible interaction between A and B 

A(domA)+B(domB)<->A(domA!1).B(domB!1) kp,km 

The proteins ‘A’ and ‘B’ can interact through their domains ‘domA’ and ‘domB’, 

and form a complex. Components of a complex are separated by a dot and the 

molecular bonds are indicated with a ‘!’ sign and a number. For example, if more 

than one molecular bond is present in a molecular complex then the bonds would 

be labeled as ‘!1’, ‘!2’, ‘!3’, and so on. Note that ‘domA’ and ‘domB’ in the 

reactants side do not have a ‘!’, which means that they have to be free or 

unbound in order for the association reaction to occur. The forward (‘kp’ or k+) 

and reverse (‘km’ or k-) reaction rates are indicated after the rule and separated 

by a comma. For unidirectional reactions, only one reaction rate is specified. 

Example Rule 2. Phosphorylation of protein A when it is bound (to protein B) 

A(domA!+,Y1~0)->(domA!+,Y1~P) kp 

Phosphorylation of ‘Y1’ can only happen if its domain ‘domA’ is bound to other 

protein (‘domA!+’). In this case, protein ‘B’ can be thought as a kinase that 

phosphorylates protein ‘A’ in ‘Y1’. The expression ‘!+’ in ‘domA!+’ indicates that 

‘domA’ needs to be bound, regardless of to which protein it is bound to. 

Alternatively, the whole complex can be explicitly specified as indicated below: 

 A(domA!1,Y1~0).B(domB!1)-> A(domA!1,Y1~P).B(domB!1) kp 
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Only domains that are relevant to the reaction are included. For example, in the 

first example rule the site ‘Y1’ was not included, because the interaction happens 

regardless of the state of ‘Y1’. BioNetGen software will generate a reaction for 

each possible molecular species. 

 

3.2.2 Reaction rules 

R1. EGF reversibly binds EGFR 

EGF(EGFL)+EGFR(I_III)<->EGF(EGFL!1).EGFR(I_III!1) kp_EGF,km_EGF 

In this simple rule EGF binds to domains I and III on EGFR with a rate ‘kp_EGF’, 

and dissociates with a rate ‘km_EGF’. 

R2. Dimerization of EGF-bound receptors 

EGFR(I_III!+,II~u)+EGFR(I_III!+,II~u)-> 

EGFR(I_III!+,II~b)+EGFR(I_III!+,II~b) kp_dim_L_L 

EGFR that is bound to EGF (‘I_III’ domain occupied) and that has its dimerizing 

domain ‘II’ unbound (‘II~u’) can dimerize with another receptor of the same kind. 

The dimerization event changes the state of domain II from unbound to bound 

(II~u->II~b), which is an implicit way of representing dimerization. Originally the 

dimerization event was described explicitly, meaning that the two receptors 

actually formed a complex. Comparing simulation results from the models that 

considered dimerization implicitly and explicitly, both models behaved almost 

identically (not shown), although the model with explicit dimerization had a much 

higher number of molecular species and reactions. This reduced complexity of 
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the implicit dimers is because they have the same number of components as a 

monomer, while in explicit dimers there are twice as many components as in a 

monomer.  Considering that complexity increases non-linearly with the number of 

components of a molecule, explicit dimers have many more possible states that 

implicit dimers (for the current model a factor of 7 increase). This increase in 

complexity becomes relevant when fitting the model to experimental results, 

which could take days or even weeks.  

Alternative versions tested: Dimerization between unliganded-unliganded or 

liganded-unliganded receptors was initially considered. In this model transition of 

EGFR ectodomain between tethered and extended conformations was 

considered implicitly by defining a parameter that defined the probability of 

receptors to be in an extended conformation (dimerization competent).   

Comparing simulation results with the model that only allowed two EGF-bound 

receptors to dimerize showed that they behaved very similar, and that only varied 

slightly at low EGF doses (not shown). Therefore, the model was simplified and 

only allow two EGF-bound receptors to form dimers. If the model is intended to 

be used for studying processes at low EGF doses, like ERK activation at sub-

nanomolar EGF concentrations, then it may be necessary to add these rules 

back into the model. 

R3. Dissociation of EGFR dimer 

EGFR(II~b)->EGFR(II~u) km_dim_L_L 
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Similarly to EGFR dimerization, dissociation of EGFR dimers was considered 

implicitly, giving equal results as when considered explicitly. The dissociation 

event changes the state of domain II from bound to unbound (II~b->II~u). 

 

R4 and R5. EGFR autophosphorylation 

EGFR(II~b,Y1068~0)->EGFR(II~b,Y1068~P) kphos1068 

EGFR(II~b,Y1173~0)->EGFR(II~b,Y1173~P) kphos1173 

Receptors that are in a dimer (II~b) can be phosphorylated with rate ‘kphos’. The 

state of the tyrosine residue changes from unphosphorylated to phosphorylated 

(Y~0->Y~P).  

Asymmetric arrangement of the kinase domains in an EGFR dimer was not 

considered for the results presented in this dissertation, but an updated version 

of the model including asymmetric phosphorylation have just been created, and 

will be used for the peer-reviewed publication of this work. Although the 

parameters for phosphorylation rate needed to be modified for this updated 

model, the simulation results from this model are very similar to the ones 

obtained with the model used for this dissertation. 

R6 and R7. Dephosphorylation of pY sites 

EGFR(Y1068~P)->EGFR(Y1068~0) kdephos1068 

EGFR(Y1173~P)->EGFR(Y1173~0) kdephos1173 
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Sites that are phosphorylated (Y~P) and unbound (absence of ‘!+’ sign) can be 

dephosphorylated with a rate ‘kdephos’. Dephosphorylation is considered 

implicitly as being constitutively active (constant dephosphorylation rate). 

R8. Binding of Grb2 to pY1068 

GRB2(SH2)+EGFR(Y1068~P)<-> GRB2(SH2!1).EGFR(Y1068~P!1) 

kp_GE,km_GE 

The SH2 domain from Grb2 binds to phosphorylated tyrosine 1068 in EGFR. 

Both domains/sites must be free in order to bind. 

Even though Grb2 can also bind directly to other sites, like pY1086, or indirectly 

through Shc1, these interactions were not considered in this model. 

R9. Binding of Shc1 to pY1173 

SHC1(PTB)+EGFR(Y1173~P)<-> SHC1(PTB!1).EGFR(Y1173~P!1) 

kp_SE,km_SE 

The PTB domain from Shc1 binds to phosphorylated Y1173 in EGFR. 
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3.2.3 Model parameters 

Model parameters presented here were subsequently transformed to units of 

molecules/cell and to units of seconds.  

Avogadro constant (NA) 

Value: 6.02214 x1023 /mol 

Used to convert concentrations in molarity to concentrations in molecules per 

cell. 

Cytoplasmic volume (Vc) 

Value: 1 picoliter 

Source: Cytoplasmic volume estimated by Fujioka et al. for HeLa cells (Fujioka et 

al., 2006). 

Grb2 and Shc1 concentration (GRB2_total and SHC1_total) 

Value: 1.0x104 - 1.0x106 copies/cell 

Source: Abundance of these proteins was allowed to vary in the range specified 

above for the fitting process. Naïve model was set to have values of 1.0x105 for 

both proteins. 

Number of EGFR (EGFR_total) 

Value: 6.0x105 receptors/cell 

Source: Value estimated previously in our laboratory for CHO EGFR-GFP cells 

using flow cytometry. 
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Association rate for cytoplasmic interactions (kon) 

Value: 5.0x106 /M/s 

Source: Assumed to be 5.0x106 /M/s for all interactions occurring at the 

cytoplasm (including receptor-adaptor protein interactions). 

Association rate for EGF-EGFR interaction (kon_EGF) 

Value: 8.0x106 /M/s 

Source: This rate was set to this value so that EGFR phosphorylation kinetics 

occurs similarly to kinetics measured at high temporal resolution using mass 

spectrometry (Reddy et al., 2016). 

Dissociation constant (Kd) for EGF-EGFR interaction (Kd_EGF) 

Value: 1 nanomolar (1.0x10-9 M) 

Source: A dissociation constant of 1 nM was used for this interaction, which it is 

close to previously estimated values (Björkelund et al., 2011). Dissociation rate 

for this interaction was obtained using the values for kon_EGF and Kd_EGF. 

Dissociation rate for EGF-bound EGFR dimers (Vc) 

Value: 0.273/s 

Source: Dissociation rate estimated in A431 cells by Low-Nam et al. using Single 

Particle Tracking (Low-Nam et al., 2011). 

Dissociation constant (Kd) for EGF-bound EGFR dimers (KD_dim) 
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Value: 60,000 molecules/cell 

Source: This parameter was set so that EGFR_total/KD_dim >> 1. 

Dissociation constant (Kd) for Grb2-pY1068 EGFR interaction (Kd_GE) 

Value: 600 nM 

Source: As estimated by Morimatsu et al. using single-molecule microscopy 

(Morimatsu, M., Takagi, H., Ota, K. G., Iwamoto, R., Yanagida, T., & Sako, 

2007). 

Dissociation constant (Kd) for Shc1-pY1173 EGFR interacton (Kd_SE) 

Value: 600 nM 

Source: Assumed to be the same as for Grb2-pY1068. This assumption was 

based on affinity measurements for protein domains binding to phospho-peptides 

of these sites showing similar affinities for Grb2-pY1068 and Shc1-pY1173 

interactions (Kaushansky et al., 2008; Hause et al., 2012). 

Phosphorylation and dephosphorylation rates (kphos and kdephos) 

Value: 0.5-5.0 /s 

Source: Allowed to vary in this range. Congruent with rates estimated by 

(Kleiman et al., 2011). 
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Chapter 4 : Insights on EGFR signaling by integrating 
computational modeling and single molecule data  

 

4.1 Introduction 

This Chapter focuses on the integration between the experimental and 

computational modeling tools developed in Chapters 2 and 3. Chapter 2 

describes a series of modifications to the Single Molecule Pull-down (SiMPull) 

technique to quantify the fraction of site-specific phosphorylation in EGFR. Then, 

Chapter 3 describes the development of a rule-based model for EGFR signaling. 

Building on those developments, SiMPull data was used to refine the rule-based 

model, and vice versa, the rule-based model was used to generate predictions 

that can be tested experimentally. The overall goal of this experiment-modeling 

integration is to gain a quantitative understanding of the dynamic behavior of the 

different processes involved in signaling. 

One particular observation that the model could not initially reproduce was 

the differential phosphorylation in tyrosine 1068 and 1173 of EGFR. In these 

results, Y1173 consistently had higher phosphorylation levels than Y1068 at 

different EGF doses and times of stimulation (see Figure 2.5 in Chapter 2). To 

explore the possible origins of this behavior the rule-based model was used. The 

model suggested that adaptor proteins are able to protect the phospho-sites to 

which they bind from dephosphorylation, and that differences in adaptor protein 

abundances could give rise to differential phosphorylation. Particularly, the model 

predicted that an increase in the abundance of Grb2 would result in a higher 
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percentage of receptors phosphorylated at sites to which Grb2 binds. In 

agreement with this prediction, overexpression of Grb2 caused a dramatic 

increase in the phosphorylation levels of a Grb2-binding site in EGFR (Y1068), 

but not in a site which Grb2 does not bind (Y1173). Preliminary results suggest 

that these observations using protein overexpression may translate to cells 

naturally expressing different levels of adaptor proteins. Results show that 

adaptor protein abundances are able to alter the phosphorylation levels of their 

binding partners resulting in biased phosphorylation in vivo.  

 

4.2 Results 

4.2.1 Model can fit experimental data with only allowing adaptor protein 

abundances to vary 

In the previous chapter, a model of EGFR signaling was described, and 

while many of the parameter values have been estimated experimentally, some 

others have not. Also, it is important to consider that measurements are 

approximations of the actual values and that these values likely change between 

different conditions, including in which cell type the measurements were 

performed. Therefore, the model parameters need to be adjusted to allow the 

model to be able to reproduce experimental data. Simulation results from the 

unmodified or naïve model show similar levels of phosphorylated tyrosine 1068 

and 1173 (pY1068 and pY1173), while the experimental data suggests that 

phosphorylation at Y1173 is higher than for Y1068 (Figure 4.1). 
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Figure 4.1. Comparison of naïve model and experimental data. Percentages of 

EGFR phosphorylation at tyrosines 1068 (a) and 1173 (b) after stimulation with 

25 nM of EGF obtained experimentally using SiMPull (blue) or predicted by the 

naïve model (red). Error bars represent mean +/- S.E.M. 

 

There are different parameter values that can be adjusted to reproduce 

the biased phosphorylation observed experimentally. Probably the most obvious 

one would be to allow the phosphorylation rate in one site (Y1173) to be higher 

than in the other. Another possibility is to have different dephosphorylation rates 

for each site. Phosphorylation rates measured in vitro as well as 

dephosphorylation rates measured in vivo were very similar for both sites, and 

therefore could not account for the biased phosphorylation observed in our 

experiments (Kim et al., 2012; Kleiman et al., 2011). A third and less obvious 

possibility would be to allow the abundance of the adaptor proteins (i.e. Grb2 and 

Shc1) to vary. The reason changes in adaptor protein abundances affect 

phosphorylation levels in the model is because an adaptor protein bound to the 

phosphorylated site protects the site from dephosphorylation by means of steric 
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hindrance (Figure 4.2a). This hypothesis is supported by in vitro studies showing 

the ability of SH2 domains to protect phospho-sites from dephosphorylation 

(Rotin et al., 1992; Brunati et al., 1998). To test if variation in protein abundances 

alone could explain the data, abundances of Grb2 and Shc1 were allowed to 

differentially vary during the fitting process, while phosphorylation and 

dephosphorylation were varied equally for both sites. The ability of the model to 

match the experimental results based on differential abundance of adaptor 

proteins supports the feasibility of this mechanism being responsible for the 

biased phosphorylation observed (Figure 4.2b,c). 

 

 

Figure 4.2. Fitting model to experimental data by varying adaptor protein 

abundances. (a) Graphical representation of mechanism of protection of 

phosphorylated sites from phosphatases by adaptor proteins. Percentages of 

EGFR phosphorylation at tyrosines 1068 (b) and 1173 (c) after stimulation with 

25 nM of EGF obtained experimentally using SiMPull (blue) or predicted by the 

fitted model (red). Error bars represent mean +/- S.E.M. 
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4.2.2 Predicted influence of Grb2 overexpression in phosphorylation levels 

is observed experimentally 

The fact that the model is able to simulate biased phosphorylation by 

having different values for the abundances in Grb2 and Shc1 does not supports 

the hypothesis that adaptor proteins are able to modulate phosphorylation levels. 

Therefore, a series of predictions of the expected effect that overexpression of 

Grb2 would have on the phosphorylation levels of the two sites were generated. 

The model predicts that Grb2 overexpression will lead to increased 

phosphorylation at Y1068, where Grb2 binds, and no change in phosphorylated 

Y1173, where Grb2 is not expected to bind (Figure 4.3a,b). To test this 

prediction, human Grb2-mCherry was overexpressed and its effect on EGFR 

phosphorylation was quantified. Consistent with model predictions, 

overexpressing Grb2 lead to a marked increase in the phosphorylation of Y1068, 

but only a slight increase in the phosphorylation of Y1173 (Figure 4.3c,d). 
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Figure 4.3. Predicted and observed phosphorylation kinetics in cells 

overexpressing Grb2. Predicted percentages of EGFR phosphorylation at 

tyrosines 1068 (a) and 1173 (b) after stimulation with 25 nM of EGF in cells with 

increasing overexpression (OE) of Grb2. Percentages of EGFR phosphorylation 

at tyrosines 1068 (c) and 1173 (d) after stimulation with 25 nM of EGF in cells 

expressing endogenous levels of Grb2 (orange, CHO ErbB1-GFP) or 

overexpressing Grb2-mCherry (blue). Measurements were done using SiMPull. 

Error bars represent mean +/- S.E.M. 
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4.2.3 Model predicts cell-specific phosphorylation patterns based on 

differences in adaptor protein abundances 

Considering the observed ability of adaptor protein overexpression to 

affect the levels of EGFR phosphorylation in a site-specific manner, it can be 

hypothesized that cell types that naturally express different levels of these 

adaptor proteins would display different phosphorylation patterns. Using global 

and targeted proteomics two research groups recently obtained estimates for the 

abundance of different proteins in different normal and cancer cell lines (Shi et 

al., 2016; Kulak et al., 2014). These estimates include the protein copy numbers 

(per cell) for EGFR, Grb2 and Shc1 in the non-tumorigenic mammary epithelial 

HMEC and MCF10A cells, and in the cervical cancer HeLa cells (Figure 4.4a). 

Simulations were performed using these values and model predictions for the 

phosphorylation patterns/kinetics in these three cell lines were obtained (Figure 

4.4b-d). In the HMEC cells, where the estimated abundances of both adaptor 

proteins are relatively low, the model predicts similar levels of phosphorylation at 

both tyrosine residues. For the MCF10A cells, the model predicts slightly higher 

phosphorylation at Y1173 given that its binding partner Shc1 is expressed in 

higher amounts than Grb2. The most evident difference in expression levels is 

found in HeLa cells, where it is estimated that there are ~600,000 molecules of 

Grb2 per cell, compared to ~100,000 molecules of Shc1 per cell. The model 

predicts that phosphorylation at Y1068 would be ~1.45 times higher than at 

Y1173 (Figure 4.4d). This prediction was tested experimentally in HeLa S3 cells, 

where phosphorylation at Y1068 was higher than at Y1173, in agreement with 
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the model prediction (Figure 4.4e). The difference in phosphorylation of these 

two sites was lower than what the model predicted, with Y1068 being ~1.11 times 

more phosphorylated than Y1173, compared to ~1.45 times higher pY1068 

predicted by the model.  

 

 

Figure 4.4. Phosphorylation patterns predicted for different cell types and 

observed for HeLa S3 cells. (a) Estimation of protein copy numbers for different 

cell lines estimated by Shi et al. (2016) and Kulak et al. (2014). (b-d) Predictions 

of phosphorylation kinetics for different cell lines. (e) Phosphorylation pattern in 

HeLa S3 cells obtained with SiMPull. Error bars represent mean +/- S.E.M. 
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4.3 Discussion 

Using computational modeling and Single-molecule Pulldown, the ability of 

adaptor proteins to protect phospho-sites from dephosphorylation and alter 

phosphorylation levels in vivo was shown. As predicted by the model, it was 

shown that overexpression of the adaptor protein Grb2 leads to increased 

phosphorylation of an EGFR tyrosine residue where Grb2 binds (Y1068), while a 

site where Grb2 does not strongly bind is minimally affected (Figure 4.3). The 

model predicted different phosphorylation patterns for cell lines in which protein 

abundances were previously estimated (Figure 4.4) (Shi et al., 2016). For 

example, the model predicted that the cervical cancer HeLa S3 cells, which 

express ~6 times more Grb2 than Shc1, would have higher phosphorylation 

levels at the Grb2-binding site Y1068 than at the Shc1-binding site Y1173. 

Experimental testing of this prediction with SiMPull showed that phosphorylation 

levels are indeed higher at Y1068 than at Y1173. Nevertheless, the difference in 

phosphorylation between these sites was not as high as predicted by the model. 

The ability of protein domains to protect the phosphorylated residues to 

which they bind from dephosphorylation has been demonstrated in vitro (Rotin et 

al., 1992; Batzer et al., 1994; Brunati et al., 1998). Even though this protection 

can happen in the conditions of in vitro experiments, in which high concentrations 

of the reactants are generally used, less is known about the relevance of this 

phospho-site protection in the context of living cells. A similar study was recently 

published (Jadwin et al., 2018). In this work, they studied the quantitative relation 

between Grb2 overexpression and enhancement of site-specific EGFR 
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phosphorylation (7 sites analyzed) obtaining similar results to the ones presented 

here. The evidence for the relevance of phospho-site protection at physiological 

Grb2 expression levels presented in this dissertation should be useful information 

additional to the one contributed by Jadwin et al. Also, while their computational 

model collapse all the tyrosine residues into one global tyrosine, our rule-based 

model has site-specific phosphorylation resolution. 

The phosphorylation at Y1068 increased ~2-fold when Grb2 was 

overexpressed, but little change was observed in a site where Grb2 is not known 

to bind. These results support the idea that adaptor proteins are able to affect 

phosphorylation levels of the sites to which they bind.  In order to get a better 

idea of the quantitative relation between Grb2 levels and protection of phospho-

sites, the concentration of Grb2 in these cells will be measured. 

As mentioned before, the model predicted that HeLa S3 cells would be 

~1.45 times more phosphorylated at Y1068 than at Y1173, due to its high Grb2 

expression levels. Quantification of phosphorylation levels using SiMPull showed 

that Y1068 phosphorylation was only ~1.11 times higher than Y1173 

phosphorylation. This discrepancy may be explained by technical limitations in 

the quantification of protein abundances or phosphorylation levels, however there 

are other possible explanations.  

It is possible that the ability of Grb2 to protect Y1068 from 

dephosphorylation is being overestimated, or the ability of Shc1 to protect Y1173 

underestimated, or a combination of both. Also it is important to notice that 

phosphorylation levels in HeLa S3 cells are higher than in CHO cells, even when 
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expression levels of EGFR are expected to be lower in HeLa cells. A possible 

explanation for this could be that phosphatase activity is lower in these cells, in 

which case protection by adaptor proteins would be less apparent. To distinguish 

these possibilities, the phosphorylation patterns on CRISPR-engineered HeLa S3 

clones lacking one or two of the copies of Grb2 or Shc1 will be measured. The 

level of decrease in Grb2 and Shc1 expression of these clones will be quantified 

using WB. These measurements together with the computational model will 

provide with valuable quantitative information about the effect that variations in 

adaptor protein abundances have on phosphorylation levels. This information 

could in turn be used in combination with other experiments to explore the 

relevance of this protection in downstream signaling. This may be of special 

relevance in cancer cells, which often have aberrant expression levels of adaptor 

proteins. 

Even though the focus of this study is on the adaptor proteins Grb2 and 

Shc1, these observations likely translate to other proteins binding to post-

translationally modified sites. Proteins with interaction lifetimes longer than those 

of Grb2 and Shc1 may protect their binding sites with a higher efficiency than that 

of these two proteins. In summary, this study has contributed to the 

understanding of the interplay between different factors that modulate 

phosphorylation patterns and kinetics. 
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4.4 Methods 

4.4.1 Simulations and parameter estimation 

A complete description of the model and its parameters can be found in 

Chapter 3 and Appendix B. Parameter values for adaptor protein abundances, 

phosphorylation rate and dephosphorylation rate were fitted to experimental data 

using the open-source software BioNetFit (Thomas et al., 2015). This software 

uses a genetic algorithm to find the best fit. Configuration files for the fitting 

process can be found in Appendix C. A list of the values selected by the fitting 

algorithm for each parameter is presented in Table 1. 

 

Table 1. List of parameter values selected by fitting algorithm (Chapter 4) 

Parameter Parameter Value (fit) 

Grb2 concentration 3.51 x104 molecules/cell 

Shc1 concentration 4.72 x105 molecules/cell 

Phosphorylation rate 0.62 /s 

Dephosphorylation rate 1.83 /s 

 

4.4.2 Single Molecule Pull-down experiments 

For methods and reagents in SiMPull experiments please refer to Methods 

section in Chapter 2. 
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Chapter 5 : A computational model of differential signaling 
induced by EGFR ligands 

 

5.1 Introduction 

In this chapter, a computational model that could explain differential 

signaling induced by EGFR ligands is described. Wilson et. al. observed that 

stimulating cells with saturating concentrations of different ligands lead to distinct 

cellular outcomes, with the low-affinity ligands epigen and epiregulin inducing 

greater cell proliferation than the high-affinity ligand EGF (Wilson et al., 2012). 

Using protein crystallography, FRET assays and Single Particle Tracking 

(performed by me and Dr. Diane Lidke), Freed et al. showed that the epigen and 

epiregulin induced a dimer structure that lacked some key interactions which are 

present in the EGF-induced dimers, leading to less stable EGFR dimers (Freed 

et al., 2017). These differences had an effect in receptor 

phosphorylation/degradation and in both ERK and Akt activation, with 

epigen/epiregulin stimulation leading to sustained signaling, and EGF-induced 

activation having a more transient behavior, with signaling being almost 

completely null by 90 minutes. The fact that these experiments were carried out 

at saturating ligand concentrations, and that another low affinity ligand 

(amphiregulin) showed transient EGFR phosphorylation similar to the one 

induced by EGF, supported the idea that the differential response elicited by 

these ligands was due to changes in receptor stability rather than in ligand-

receptor affinity. The differences in signaling kinetics were also reflected in 
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cellular outcomes, with epigen and epiregulin leading to cell differentiation after 

long-term incubation with these ligands, and with EGF inducing cell proliferation. 

The difference in signal downregulation observed for these ligands may be 

due to a combination of multiple factors, including differences in the ability to 

recruit protein phosphatases and differences in receptor trafficking. Ligand-

dependent trafficking of EGFR has been previously reported; for example, TGF-α 

seems to preferentially induce EGFR recycling to the plasma membrane allowing 

for sustained ERK activation, whereas EGF promote receptors to be directed to 

the lysosomal pathway for degradation (Francavilla et al., 2016; Roepstorff et al., 

2009). 

The fate of EGFR after activation is also dependent on ligand 

concentration. For example, previous work suggests that low doses of EGF 

induce receptor internalization almost exclusively through clathrin-mediated 

endocytosis (CME), leading to relatively low levels of receptor degradation and 

high recycling (Sigismund et al., 2008). At high doses of EGF, a fraction of the 

receptors internalize also through CME, but another fraction internalizes through 

a type of non-clathrin mediated endocytosis that promotes receptor degradation. 

This type of endocytosis was shown to be dependent on ubiquitination of EGFR 

(Sigismund et al., 2005). One of the main proteins responsible of EGFR 

ubiquitination is the E3 ubiquitin ligase Cbl, which can be recruited directly to 

phosphorylated Y1045 in EGFR or indirectly through Grb2, with which Cbl forms 

a complex (Waterman, 2002). EGF dose-response curves of EGFR ubiquitination 

showed that receptor ubiquitination levels are low when EGF concentration is 
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below a threshold (3-10 ng/mL EGF in HeLa cells), and high after this 

concentration threshold is surpassed (Sigismund et al., 2013). On the other 

hand, receptor phosphorylation showed a more gradual increase as a function of 

EGF concentration. This behavior seems to happen at the plasma membrane, as 

it was unaffected by inhibition of receptor endocytosis by dynamin knockdown. 

Their results supported a mechanism in which Cbl-Grb2 complex is recruited in a 

cooperative fashion to receptors with dual phosphorylation at the Cbl and Grb2 

recruiting sites (pY1045-pY1068). This hypothesis was further supported by 

testing a computational model of Cbl-Grb2 cooperative recruitment and 

ubiquitination based on quantitative measurements (Capuani et al., 2015). 

Consistent with previous results, receptor ubiquitination levels directly related to 

endocytosis of the receptor through non-clathrin mediated endocytosis, leading 

to degradation.  

Using this information, it can be hypothesized that if dimer lifetimes 

induced by epiregulin or epigen are not long enough to result in significant 

simultaneous phosphorylation at Y1045 and Y1068, then only a few Cbl-Grb2 

complexes will be recruited. This, in turn, would lead to lower receptor 

ubiquitination and signal downregulation as compared to EGF stimulation. To 

help guide experimental efforts in testing this hypothesis, the computational 

model described in Chapter 3 was extended to include cooperative recruitment of 

Cbl and receptor ubiquitination, and to account for differential dimer stability 

induced by EGFR ligands. The model predicts that, in cells with low to moderate 

levels of EGFR, epiregulin will induce notably less ubiquitination than EGF and 
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explain the different signaling outputs observed. In combination with 

experiments, this model is expected to improve the quantitative understanding of 

the processes involved in differential signaling by different EGFR ligands. 

 

5.2 Results 

5.2.1 Model reproduces Y1068-Y1173 dual phosphorylation measured 

experimentally 

Before proceeding to extend the model to account for multi-

phosphorylation at the tyrosine pair relevant for Cbl recruitment and 

ubiquitination (Y1045-Y1068), the performance of this model was tested for its 

ability to reproduce phosphorylation levels of the Y1068-Y1173 pair, for which 

SiMPull data was already available. Up to this point the data that have been used 

for training and testing the model come from 2-color SiMPull experiments, in 

which the phosphorylation state of a single specific tyrosine residue is 

determined. Therefore, the model does not provide information about 

simultaneous phosphorylation at multiple sites. Chapter 2 describes an improved 

protocol to allow detection of receptor multi-phosphorylation using 3-color 

SiMPull. In those experiments, the receptors were co-labeled with spectrally 

distinct antibodies for pY1068 and pY1173, and the percent of receptors with 

simultaneous phosphorylation at these two sites was estimated. The model 

predicted that ~6.8% would be phosphorylated in both sites (Figure 5.1a). The 

percentage of dual phosphorylation estimated experimentally was similar to that 

predicted by the model (~6.8% vs ~7.2%, Figure 5.1). These results show that 
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the model is capable of making congruent predictions about dual phosphorylation 

when provided with single-site phosphorylation data of two sites. 

 

Figure 5.1. Predicted and observed dual Y1068-Y1173 phosphorylation. (a) 

Prediction of EGFR phosphorylation at sites Y1068, Y1173, and dual 

phosphorylation at these sites (pYpY). (b) Graphical representation of 3-color 

SiMPull for the analysis of individual and simultaneous phosphorylation at Y1068 

and Y1173. (c) 3-color SiMPull results for EGFR from CHO EGFR-GFP cells 

stimulated with 25 nM of EGF for 5 minutes. Error bars represent mean +/- 

S.E.M. 

 

5.2.2 Extended model for ubiquitination is able to reproduce experimental 

behavior 

The model was extended to include some of the events that impact EGFR 

ubiquitination levels at the plasma membrane: phosphorylation of tyrosine 1045, 

direct recruitment of Cbl to pY1045, indirect recruitment of Cbl through the Grb2 

and ubiquitination of EGFR by Cbl. The model also considered the cooperative 

recruitment of the Cbl-Grb2 complex to receptors phosphorylated at both Y1045 
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and Y1068 (Sigismund et al., 2013; Capuani et al., 2015). The current idea 

behind this observed cooperativity is that, when a Cbl-Grb2 complex is bound to 

one site in a dually phosphorylated receptor, the chances of (re)binding to the 

other site increases due to the increased proximity or local concentration. This, in 

turn, results in a significant increase in the time that the complex remains bound 

to these receptors.  

To capture this behavior in the model, the association constants of Cbl 

and Grb2 to the phosphorylated receptor are multiplied by a cooperativity 

constant (𝒌𝒄) in the reactions where the complex is already bound to the receptor 

and the other tyrosine residue is phosphorylated and unoccupied (Figure 5.2). In 

a similar way, if the Cbl-Grb2 complex breaks while both Cbl and Grb2 are bound 

directly to the receptor the association constant for Cbl-Grb2 is multiplied by 𝒌𝒄. 

Grb2 can also be recruited to tyrosine 1086 and contribute to the cooperative 

behavior. Comparison of a model containing one or two Grb2-binding sites 

showed that both models could fit the experimental data equally well. Thus, only 

one Grb2 binding site was considered in the model. The model also considers 

that the number of Cbl molecules available for binding to the receptor is generally 

low (~5,000-10,000 molecules/cell) compared to other adaptor proteins like Grb2 

(~1.0x105 to 1.0 x106 molecules/cell) (Shi et al., 2016; Capuani et al., 2015). 



www.manaraa.com

78 
 

 

Figure 5.2. Graphical description of reactions included in extended model to 

consider cooperative Cbl recruitment.  𝒌𝒄 represents the cooperativity constant to 

account for increased local concentration. For simplification, the dissociation of 

the Cbl-Grb2 complex while bound to EGFR is not depicted, but in the actual 

model these reactions were included. 

 

The model was fitted to the dose-response curves of WT receptor 

ubiquitination and phosphorylation in response to EGF in HeLa cells reported by 

Sigismund et al. (2013). The dataset for ubiquitination of an EGFR mutant 

lacking the sites for Grb2 recruitment (Y->F mutations) but having Y1045 

(Y1045+) was also included for fitting the model. All parameters shared by the 

previous and extended models were kept at the same value and the parameters 

unique to the extended model were estimated (see Methods). As observed in 

Figure 5.3, the model was able to reproduce all three experimental dataset fairly 

well, with ubiquitination increase happening at lower EGF doses than 
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phosphorylation, and with ubiquitination in the Y1045+ mutant receptor being 

drastically lower than in the WT receptor (Figure 5.3a and Figure 5.3b, 

respectively). Notice that the ubiquitination levels in the model are low (~2%, 

solid red line in Figure 5.3b). The model was unable to yield a good fit for higher 

ubiquitination levels. 

 

Figure 5.3 Fitting model to experimental data. Comparison of model simulations 

(solid lines) to the experimental data (dashed lines) used for the fitting. (a) Dose-

response curve for receptor phosphorylation at tyrosine 1068 (pY) and 

ubiquitination (Ub) in cells expressing WT EGFR. (b) Ubiquitination curve for WT 

and mutant receptor devoid of the sites for Grb2 recruitment but containing the 

site for direct recruitment of Cbl (Y1045+). Data obtained from Sigismund et al. 

(2013). 

 

To validate the model, knockdown (KD) of EGFR was simulated and the 

ubiquitination dose-response curve from simulation results were compared to the 

experimental data obtained by Capuani et al. (2015) (Figure 5.4a). Consistent 
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with experimental results, model simulations showed that decreasing the number 

of EGFR molecules would result in a shift to the right of the ubiquitination curve. 

The reason for this behavior is that the number of receptors with dual 

phosphorylation at Y1045-Y1068 in the EGFR KD cells is much lower than in WT 

cells, and needs higher EGF concentrations to induce an enough receptors to be 

dually phosphorylated (and recruit Cbl efficiently) (Figure 5.4b). 

When looking at the fraction of receptors ubiquitinated instead of the 

values normalized to the maximum in Figure 5.4c, it can be observed that the 

model predicts the ubiquitination percentage to be higher in cells with fewer 

receptors (EGFR KD, 50x103 receptors) than in WT cells (250x103 receptors). 

This is consistent with the results of Capuani et al. (2016) and the idea that Cbl is 

present at a limiting concentration. To additionally validate the model, the effect 

of Cbl overexpression in receptor ubiquitination observed in this model and 

experimentally were compared (Figure 5.4d). Consistent with experimental 

results, an increase in the concentration of Cbl resulted in higher ubiquitination 

levels but did not result in a shift of the curve to the right or left. It is important to 

mention that, while this model reproduced most datasets, it was not able to 

completely match the dual phosphorylation curve at Y1045-Y1068 measured 

using co-IP WB by Sigismund et al. (2013) (Figure 5.4e). 
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Figure 5.4. Model validation: Ubiquitination in cells with EGFR knockdown or Cbl 

overexpression.  Solid lines represent results from model simulations and dashed 

lines from experimental results from the literature. (a) Knockdown (KD) of EGFR 

was simulated by a 5-fold decrease in the number of receptors per cell. (b) pYpY 

refers to pY1045-pY1068 pair. Dark line indicates the number of Cbl per cell in 

the model (5,000/cell). (c) Same as (a) but not normalized to maximum 

ubiquitination. (d) Cbl overexpression was simulated as a 2-fold increase in the 
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number of Cbl molecules per cell. (e) Comparison of dual phosphorylation in the 

model and in experimental results by Western blot. 

 

5.2.3 Model predicts impaired ubiquitination in epiregulin-stimulated MCF7 

cells 

The validated model was used to predict the effects that differences in 

ligand-dependent dimer lifetimes would have in receptor ubiquitination. Even 

though in vitro and in vivo studies suggested an important decrease in the 

stability of epiregulin-induced dimers, dimer off-rates for this condition have not 

been reported (Freed et al., 2017). Single-Particle Tracking measurements of 

EGFR dimer off-rates previously performed by Low-Nam et al. in our laboratory 

suggest that the off-rates of singly EGF-bound dimers is ~9 larger (less stable) 

than that for doubly EGF-bound dimers in HeLa cells (Low-Nam et al., 2011). 

Taking this information into consideration, as a starting point a 4 times larger 

dissociation rate for epiregulin-induced dimers than for dimers bound to two 

molecules of EGF was used in the model. On rates (dimerization rates) were 

assumed to be the same for EGF- and epiregulin-bound receptors. To simplify 

direct comparison of ubiquitination as a function of fraction of ligand-bound 

receptor, ligand concentration and affinity were kept the same for both ligands.  

Simulation results suggest that shorter-lived epiregulin dimers would not 

be able to induce as strong of ubiquitination as EGF dimers, even at saturating 

ligand concentrations in MCF7 cells, which express low levels of EGFR (Figure 

5.5a). Reduced receptor ubiquitination could result in less EGFR downregulation 
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and a more sustained signal, as observed experimentally for epiregulin and 

epigen. The predicted ligand-dependent differences in receptor phosphorylation 

can be observed in Figure 5.5b. 

 

 

Figure 5.5. Predicted ubiquitination and Y1068 phosphorylation levels in MCF7 

cells when stimulated with EGF vs epiregulin.  Levels of EGFR were set to 5,000 

receptors/cell to simulate low expression levels of EGFR observed in MCF7. 

 

 

5.2.4 Using the model to help identify the mechanisms contributing to 

epiregulin-induced sustained signaling 

Even if receptor ubiquitination is significantly lower in epiregulin-treated 

cells than in those stimulated with EGF, as predicted by the model, this would not 

rule out the possibility that other mechanisms are responsible for the prolonged 

EGFR signaling observed upon stimulation with high doses of epiregulin. 
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Therefore, the model was used to explore if there was a cellular context in which 

high doses of epiregulin were expected to achieve a similar level of receptor 

ubiquitination as doses of EGF that induce transient signaling.  

Since expression levels of EGFR were shown to alter the dose-response 

curve of receptor ubiquitination (see Figure 5.4a and (Capuani et al., 2015)), the 

number of receptors per cell in the model was modulated and the predicted 

ubiquitination curves for EGF and epiregulin for these cellular contexts were 

simulated (Figure 5.6, top). The model predicts that as EGFR expression is 

increased the ubiquitination and phosphorylation response for EGF and 

epiregulin become more similar, especially at saturating ligand concentrations. If 

these predictions are confirmed and ubiquitination is responsible for differential 

signaling, it would expected both ligands to induce similar signaling kinetics (i.e. 

transient behavior). If, instead, epiregulin-induced signaling continues to be 

sustained even when having similar levels of receptor 

phosphorylation/ubiquitination as EGF-activated receptors, it may suggest that 

sustained signaling is likely originated by another distinct property induced by 

epiregulin (e.g. ligand-receptor stability in endosomes). 
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Figure 5.6. Predicted EGF- and epiregulin-induced ubiquitination and 

phosphorylation different EGFR expression levels.  The model predicts that as 

EGFR expression levels increase, EGF vs EREG difference is less notorious. 

 

5.3 Discussion 

Previous experiments by Roepstorff et al. showed recycling of EGFR 

when stimulated with epiregulin (Roepstorff et al., 2009). Nevertheless, these 

experiments were carried out using a ligand concentration of 100 nM, which 

compared to the concentration necessary to elicit half maximum receptor 

phosphorylation in cells (20 μM) would be considered a non-saturating 

concentration (Freed et al., 2017). Therefore, it is unknown how much receptor 
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recycling and degradation is induced by high doses of ligands such as epigen 

and epiregulin. 

Our model predicted that only a low fraction of receptors (2-6%) are 

ubiquitinated at the plasma membrane level at early time points (e.g. 2 min) 

(Figure 5.3b, and top of Figure 5.6). A set of parameters values could not be 

found that resulted in higher ubiquitination levels and still fit adequately the 

experimental results. An explanation may be that in the model the stability of the 

Cbl-Grb2 complex to dually phosphorylated receptors needed to be relatively 

high (half-life > 20 seconds) in order to fit to the observed ubiquitination curves. 

The slow unbinding of this complex would limit the number of different receptors 

to which it can bind at short timescales. SiMPull assay is going to be used to test 

whether indeed only a small fraction of receptors is ubiquitinated at this time 

point. 

It is possible that only a low fraction of ubiquitinated receptors is needed to 

induce non-clathrin mediated endocytosis (NCE) of both ubiquitinated and non-

ubiquitinated receptors. It is also possible that Cbl is able to ubiquitinate not only 

the receptor to which it binds but also receptors to which it dimerizes, or nearby 

receptors in the same microdomains at the plasma membrane. It was estimated 

that ~22% of receptors are ubiquitinated in at least one site of EGFR after 5 

minutes of stimulation with a relatively high dose of EGF (20 ng/mL) (Huang et 

al., 2013). Considering that Cbl will continue to induce receptor ubiquitination 

after being endocytosed (Umebayashi et al., 2008), it is feasible that only a small 
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fraction of receptors is ubiquitinated at the membrane, as represented in our 

model.  

Our model suggested that at higher receptor concentrations than the ones 

tested experimentally (~5x103 - 50x103 receptors/cell) by Freed et al. (2017), 

there would be a dose of epiregulin that would induce similar levels of 

cooperative recruitment of Cbl and receptor ubiquitination as those induced by 

EGF at some other dose (Figure 5.6, top). It may be possible that sustained 

signaling kinetics by epiregulin will still be observed in these conditions. If that is 

the case, one possible explanation would be that the nature of the ubiquitination 

induced by epiregulin and EGF may be different (e.g. different levels of mono- vs 

poly-ubiquitination), even if the total ubiquitination measured is similar. Another 

possibility may lie in differences in receptor trafficking induced by factors other 

than ubiquitination, such as stability of the ligand-receptor complex inside 

endosomes. This could happen either by changes in endosomal pH or by ligand 

unbinding at endosomes, as suggested for the high-affinity ligand for EGFR TGF-

α and the low-affinity ligand for EGFR amphiregulin, respectively (Ebner and 

Derynck, 1991; Roepstorff et al., 2009). 

Quantitative measurements will be performed to test the predictions made 

by the computational model. This will contribute to gaining mechanistic insights 

about the processes involved in differential signaling induced by EGFR ligands. 
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5.4 Methods 

5.4.1 Simulations and parameter estimation 

Parameter values used in the fitted model of the previous chapter were 

used for the extended model presented here. A complete list of parameters and 

reaction rules used for this model can be found in Appendix B. A list of the 

parameters fitted using BioNetFit for this model, and the values selected by the 

fitting algorithm, can be found in Table 2. Configuration files for the fitting process 

can be found in Appendix C. 

 

Table 2. List of parameter values selected by fitting algorithm (Chapter 5) 

Parameter Parameter Value (fit) 

Kd Cbl-pY1045* 2.51 x10-7 M 

Kd Cbl-Grb2 7.24 x10-7 M 

Cooperativity constant 2.59 x108 

Ubiquitination rate 5.26 x10-2 /s 

Deubiquitination rate 1.71 x10-2 /s 

* Kd Cbl-pY1045 means dissociation constant (in molar units) between Cbl and 

pY1045 in EGFR. 
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Chapter 6 : Implications and Future Studies 

 

6.1 Implications 

6.1.1 Significance of improvements made on SiMPull technique  

The improvements made on the SiMPull technique allows for the 

quantification of the heterogeneity in the activation states of single molecules. 

The majority of the proteins involved in signaling have multiple sites of 

phosphorylation and other post-translational modifications. Therefore, these 

improvements should prove useful in the study of other signaling players. 

Additionally, some of the improvements made for quantification of receptor 

phosphorylation, like reduction of background fluorescence, can be useful for 

when doing traditional SiMPull where the intention is to quantify the 

heterogeneity in composition of protein complexes.  

 

6.1.2 Significance of understanding role of adaptor protein abundances in 

biased phosphorylation  

By studying the quantitative relation between adaptor proteins and 

phosphorylation, the quantitative understanding of the different factors affecting 

phosphorylation levels has been improved. This information can be included in 

future computational models to have a more realistic representation of the 

processes modulating phosphorylation. The understanding of the phospho-site 

protection mechanism described could also help interpreting results in which 



www.manaraa.com

90 
 

variations in protein abundances are involved, as the possibility of protection 

from phosphatases is not commonly considered. For example, if the 

phosphorylation levels of two sites are correlated, one hypothesis would be that 

phosphorylation of one site promotes the phosphorylation of the second, or vice 

versa, as hypothesized by Coba et al. when observing correlation between 

phosphorylated sites of a neuronal signaling pathway (Coba et al., 2009). But it 

can also be that the correlation is due to an adaptor protein protecting two nearby 

sites from dephosphorylation. Additionally, understanding the relation of adaptor 

protein abundances and phosphorylation could help understand what happens in 

cancer cells that overexpress certain adaptor proteins. 

 

6.1.3 Significance of rule-based model for EGFR activation and 

ubiquitination by different ligands  

By testing the predictions generated by the model described, it is expected 

that a better mechanistic understanding of differential signaling induced by EGFR 

ligands will be gained. Understanding how dimer lifetimes translates into different 

signaling outcomes can be helpful in understanding differences in signaling 

observed with other ligands, or in other membrane receptors whose binding 

lifetimes are different to those of EGFR. The rule-based model created in this 

work can be adapted to represent activation of these receptors. Additionally, this 

knowledge can be useful in designing intelligent modulators of signaling protein 

interactions to promote signal downregulation in diseases such as cancer. 
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6.2 Future Studies 

6.2.1 Effects of adaptor protein abundances in downstream signaling and 

cellular outcomes 

To gain a deeper quantitative understanding of the relationship between 

protein abundances and phosphorylation levels, our team is generating a series 

of HeLa S3 clones in which one or two copies of the genes encoding for Grb2 

and Shc1 have been knocked out using CRISPR engineering. 

Cancer cells commonly have altered expression of signaling proteins. 

Therefore it would be interesting to know what the effects of these alterations in 

signaling are. For example, the ERK pathway has been shown to be activated at 

very low doses of EGF, therefore it would be interesting to know if Grb2 

overexpression leads to ERK activation happening at even lower doses, or if it 

makes the activation stronger. When looking at the effect of protein 

overexpression, it is difficult to distinguish how much of the observed effect is 

due to protein availability itself and how much due to site protection. To evaluate 

these contributions, a model where sites are not protected by adaptor proteins 

could be created. 

 

6.2.2 Experimental testing of model predictions for differential 

ubiquitination induced by EGFR ligands 

Measurements of ubiquitination levels in MCF7 (~5,000 receptors/cell) or 

T47D (~50,000 receptors/cell) cells in response to saturating concentrations of 
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EGF and EREG will be performed, in order to see if, as predicted by our model, 

differential ubiquitination is observed. These measurements could be performed 

first by Western blot and if a difference is observed, then SiMPull experiments for 

ubiquitination can be performed. This would provide the percent of receptors 

ubiquitinated and would be very useful to compare with the current model, which 

predicts low ubiquitination percentages (2-6%).  Another experiment that would 

provide useful information to refine the model would be to measure 

phosphorylation at Y1045 with SiMPull. The anti-pY1045 antibody is available in 

the lab and it will be labeled for use in SiMPull experiments in the near future. 

Also, it is likely dual phosphorylation at Y1045-Y1068 with SiMPull will be 

performed. Considering the close proximity of these sites, there may be problems 

with steric hindrance between these antibodies, in which case, Fab fragments 

could be generated to decrease chances of steric hindrance. 

Additionally, it is going to be tested if phosphorylation and ubiquitination 

induced by the two ligands become more similar in cells expressing higher levels 

of receptors, as predicted by the model. If that is the case, then it would be 

interesting to check if the signaling kinetics is also similar (i.e. transient), 

supporting the role for ubiquitination in biased signaling. If that is not the case, 

other mechanisms may be involved, for example differences in ligand-receptor 

stability in endosomes. EGF has been shown to still induce strong 

phosphorylation in early endosomes (Francavilla et al., 2016), but if EREG 

stability decreases in endosomes it could be expected to have lower 

phosphorylation in early endosomes, and likely increased receptor recycling. This 
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can be tested by using confocal microscopy by labeling for markers of early 

endosomes (e.g. Rab5) and EGFR phosphorylation, and also labeling for 

recycling markers (e.g. Rab11). 

 

6.2.3 Study phosphorylation and downstream signaling of EGFR mutant 

L858R 

The L858R EGFR mutant, involved in Non-Small Cell Lung Cancer, has 

been shown to have increased kinase activity and increased dimer stability 

(Zhang et al., 2006; Valley et al., 2015). It would be interesting to explore what 

are the effects of these altered kinetic parameters in biased phosphorylation and 

in receptor multi-phosphorylation. Preliminary results using 3-color SiMPull show 

that even though the levels of phosphorylation increase, the biased 

phosphorylation still remains (Figure 6.1).  

 

Figure 6.1. Single- and multi-phosphorylation in WT vs L858R mutant receptor.  

Receptors expressed in CHO cells. Receptors were labeled using an anti-pY 
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(pan-pY) antibody. An anti-EGFR antibody will be used in future experiments to 

label the receptors. Error bars represent mean +/- S.E.M. 

It would also be relevant to understand how dual phosphorylation at 

Y1045-Y1068 and receptor ubiquitination is affected in the mutant receptor. 

Shtiegman et al. showed that Cbl recruitment to L858R EGFR and receptor 

ubiquitination were decreased compared to WT, even when Y1045 and Y1068 

were more phosphorylated  (Shtiegman et al., 2007). Their results suggest that 

by favored heterodimerization with HER2 this mutant evades Cbl recruitment and 

ubiquitination. It would be interesting to know if receptor ubiquitination is 

increased in this mutant in the absence of HER2, and explore how these 

changes affect downstream signaling and cellular outcomes. 
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APPENDIX A: MATLAB scripts for analysis of SiMPull data 

This script was used to localize and process SiMPull data. 

 
% Script to overlay fitting in 2 channels 
close all; 
clear all 
clear dat 

  

  
% Instructions: copy this script inside a 'scripts' folder located in 

the 
% same location as the files to be analyzed. Copy correct channel 
% registration file name. Set threshold for the 3 channels (488 top-

right, 
% 561 top-left, and 642 bottom-left; use 
% thresholdTest.m to assess your decision). Use joinSequentialCh to 

join 
% the 3 channels in single images (it creates "joined_" files). Use 

formatFilenames.m to create 
% list of files ("joined_" files) and 4D-dipimage to assess frames that 

should be excluded for 
% analysis (bad frames). 

  
% This version (v2_03) allows definin the min P value to filter fits 

for 
% each individual channel. Therefore you can filter out only irregular 

GFP 
% molecules that are probably more than one receptors in close 

proximity 

  
% This version (v2_02) saves the coordinates of the triple overlay GFP 
% molecules in the variable 'coordTripleOv'. 

  
% This version (v2_01) got significantly modified in order to be able 

to 
% use the new Registration Class that Mark wrote. In order to analyze 

the 
% fiducial (now acquired using nanogrid) you should use Matlab 2015a or 
% later versions. 

  
% This version (v1_04) don't sum the frame selected and the previous 

one, 
% only the frame specified, given that now we are using an automated 
% process for the data acquisition and the shutters from the lasers and 

the 
% camera are coordinated. 

  
% This version (v1_05) take first image in from right channel and 

second 
% from left channel because for some reason the green laser (right ch) 

started 
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% turning on from the first frame acquired (frame 0), when normally is 

from 
% the second frame (frame 1) 

  
% This version (v1_06) is the v1_05 adapted to get the fields of view 

from 
% the new QuadView setting. These fields of view are of 256x256 (double 
% than before) and we image only 9 fields of view instead of 36. 

  
% This version (v1_06_3color) is the v1_06 adapted to analyze and 

overlay 
% the 3 channels (488 top-right, 561 top-left, and 642 bottom-left) 

  
% This version (v1_07_3color) fixed some errors 
% v1_06_3color had in quantifying % of 561 spots with overlapping 642, 

and 
% included quantification for overlapping of spots of the three 

channels 
% (triple overlap) 

  
% This version (v1_08_3color) is the v1_07_3color adapted to analyze 

and overlay 
% the 3 channels (488 top-right, 561 top-left, and 642 bottom-left) 
% acquired with the new laser and instrumentation class. Here the 3rd 
% dimension indicates the number of frame or field of view, and the 4th 
% indicates the 3 different channels/lasers (642 first, 561 second and 

488 
% last, acquired sequentially to prevent bleed through and bleaching). 

  
% Version v1_09_3color is v1_08_3color but with higher P value 

threshold to 
% prevent considering very bright crap that fluoresces in 2 or 3 

channels 
% and that would be otherwise considered phospohrylated receptors. (P 

value 
% changed to   instead of 0.0) 

  

  
intperframe_488= 700; % Intensity to use for thresholding per frame in 

the respective channels. 
intperframe_561= 600; 
intperframe_642= 200; 
minPValue_488= 1e-99;%1e-99;2e-1 % Minimum P value for filtering 

fits(the bigger the more fits will reject) 
minPValue_561= 0;%1e-99; % Minimum P value for filtering fits(the 

bigger the more fits will reject) 
minPValue_642= 0;%1e-99; % Minimum P value for filtering fits(the 

bigger the more fits will reject) 

  
% define files 
cd .. % change current directory to one level up 
filedir= pwd; % use current directory as filedir  
% filedir='E:\Emanuel\DATA\SiMPull\150803 CHO EGFR-GFP A647-NHS-ester 

surface'; 
paramsfile=[filedir '\scripts\SPTparams.mat']; 
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% Create folder to save files for tracking 
savedir=fullfile(filedir,'totrack'); 
if ~exist(savedir, 'dir') 
  mkdir(savedir); 
end 

  
% Create folder to save files to save figures 
savedirFigs=fullfile(filedir,'Figures'); 
if ~exist(savedirFigs, 'dir') 
  mkdir(savedirFigs); 
end 

  
% Defined location and name of Registration Analysis files 
regAnal561file=[filedir '\fiducial\RegAnal_A488_561.mat']; 
regAnal642file=[filedir '\fiducial\RegAnal_A488_642.mat']; 

  

  

  
% Set file info 

 

  
% Small sample of files for dissertation 

 
dat(1).filename='joined_CHO-ErbB1-GFP_5min-10nM-EGF_anti-EGFR-

AF555_pY1068-CF640R-2018-2-1-17-45-13'; 
badFrames{1}= []; 

  
dat(2).filename='joined_CHO-ErbB1-GFP_5min-10nM-EGF_anti-EGFR-

AF555_pY1068-CF640R-2018-2-1-17-47-29'; 
badFrames{2}= [1]; 

  
dat(3).filename='joined_CHO-ErbB1-GFP_5min-10nM-EGF_anti-EGFR-

AF555_pY1068-CF640R-2018-2-1-17-47-51'; 
badFrames{3}= []; 

  
dat(4).filename='joined_CHO-ErbB1-GFP_5min-10nM-EGF_anti-EGFR-

AF555_pY1068-CF640R-2018-2-1-17-48-11'; 
badFrames{4}= [1:3]; 

  
dat(5).filename='joined_CHO-ErbB1-GFP_5min-10nM-EGF_anti-EGFR-

AF555_pY1068-CF640R-2018-2-1-17-48-50'; 
badFrames{5}= [1]; 

  
dat(6).filename='joined_CHO-ErbB1-GFP_5min-10nM-EGF_anti-EGFR-

AF555_pY1068-CF640R-2018-2-1-17-49-48'; 
badFrames{6}= [1 2]; 

  

 

 

  

  

  
for iiDat=1:length(dat) 
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    goodFrames{iiDat}= 1:3; % Initialize good frames (it doesn't take 

consider first and last frame (0 and 4) because they are used for 

focusing) 
    goodFrames{iiDat}([badFrames{iiDat}])= []; % Remove bad frames 
    for iiFrame=1:length(goodFrames{iiDat}) 
        dat(iiDat).frms{iiFrame}=goodFrames{iiDat}(iiFrame); % create 

structure with frames to be analyzed 
    end 
end 

  

  

  

  

  
% Load Registration Analysis files and get transformation function 
% Transform 561 based on 488 
load(regAnal561file) 
SXS = RA.SensorXSplit;      % channel 2 x-coordinates should be > SXS 
% Construct the mapping from the right channel to the left. 
% Note that mapping occurs in absolute coordinates. 
% Optimal map: 
M561 = RA.getOptimalMapPixels(); 
% Maps by algorithm: 
%    (1) Null 
%    (2) GlobalAffine 
%    (3) LocalAffine 
%    (4) SmoothAffine 
%    (5) LWM 
%    (6) Polynomial 
%    (7) NRS 
%M = RA.maps(5).mapFunctionPixels; 

  
% Transform 642 based on 488load(regAnal561file) 
load(regAnal642file) 
SXS = RA.SensorXSplit;      % channel 2 x-coordinates should be > SXS 
M642 = RA.getOptimalMapPixels(); 

  

  

  
totFrms= 0; % Initialize total number of frames to be analyzed 
% Calculate total number of frames to be analyzed 
for ii=1:size(dat,2) 
    totFrms= totFrms+size(dat(ii).frms(:),1); 
end 

  
% Before looping through initiate define column identifiers and 

'valuecell' 
% to store the numbers of found fits 

  
% define column identifiers 
colIdent= {'FileName', '488-fits','561-fits','642-fits',... 
'488-561-overlaps','488-642-overlaps','561-642-overlaps','Triple-

overlap',... 
'% 488 w/561','Average %','% 488 w/642','Average %','% 488 w/561-

642','Average %',... 
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'% 488-561 w/642','Average %','% 488-642 w/561','Average %'}; 

  

  
valuecell= cell(totFrms+1,numel(colIdent)); 
valuecell(1,:)= colIdent; 
absFrameNum= 0; % Absolute frame number (to correctly place info in 

cell array 'valuecell') 
blnk=dip_image(zeros(256,256)); % Blank image used in the process of 

building gaussian blob images 

  
% loop through each movie defined above 
for ii=1:size(dat,2) 
     load(fullfile(filedir,dat(ii).filename));  
     % because sequence var gets re-written need to rename, Now 
     % I'm using dataset instead of sequence so this renaming may 
     % be unnecesary in the future 
    for jj=1:length(dat(ii).frms) 
        clear sptObj642 sptObj488 test currfrms image_out c svfilename 

TrackXY642 TrackXY488 tots488 tots642 

         
        absFrameNum= absFrameNum+1; % Absolute frame number (to 

correctly place info in cell array 'valuecell') 

        
        % process image, crop and save 
        currfrms=dat(ii).frms{jj}; % variable for the current frames to 

analyze 
        fullsequence=squeeze(datasetJoined(:,:,:));  
        test_488=sum(fullsequence(:,:,currfrms),[],3); % do a sum 

projection of all frames 
        test_488=squeeze(test_488); 

         
        fullsequence=squeeze(datasetJoined(:,:,:));  
        test_561=sum(fullsequence(:,:,currfrms),[],3); % do a sum 

projection of all frames 
        test_561=squeeze(test_561); 

         
        fullsequence=squeeze(datasetJoined(:,:,:)); 
        test_642=sum(fullsequence(:,:,currfrms),[],3); % do a sum 

projection of all frames 
        test_642=squeeze(test_642); 

         
        svfilename=[dat(ii).filename '_' mat2str(currfrms(1)-1) '-' 

mat2str(currfrms(size(currfrms,2)))]; % create filestring with filename 

and frame range 

         
        dipsetpref('DefaultFigureWidth', 512,'DefaultFigureHeight', 

512); % set default width of window to 512 to display next image 

properly 
        h_raw=dipshow(test_642); % use to show the image 
%         saveas(h_raw,fullfile(savedirFigs,[svfilename 

'_raw.png']),'png') 
        saveas(h_raw,fullfile(savedirFigs,[svfilename 

'_raw.fig']),'fig') 
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        % create sequence of 5 frames- just repeated image so that SPT 

code can be 
        % used for fitting 
        sequence=repmat(test_488(256:end,0:255),[1 1 5]); 
        save(fullfile(savedir,[svfilename '_488.mat']),'sequence'); % 

save 488 of image 

         
        sequence=repmat(test_561(0:255,0:255),[1 1 5]); 
        save(fullfile(savedir,[svfilename '_561.mat']),'sequence'); % 

save 561 of image 

         
        sequence=repmat(test_642(0:255,256:511),[1 1 5]); 
        save(fullfile(savedir,[svfilename '_642.mat']),'sequence'); % 

save 642 of image 

         

                  

          

          

          
        %use spt to find positions of 488 channel 
        params=load(paramsfile); 
        sptObj488=SPT; 
        sptObj488.DataFile=fullfile(savedir,[svfilename '_488.mat']) 
        sptObj488.setParams(params); 
        

sptObj488.ParamsFindBoxCenters.MinPhotons=size(currfrms,2)*intperframe_

488; 
%         sptObj488.ParamsFindBoxCenters.maxPixelRegionSize=1; % change 
        sptObj488.findBoxCenters 
        % To prevent error if there are no spots in the image 
        if size(sptObj488.BoxCenters,1) == 0 
            TrackXY488 = []; 
        else 

             
        % 
%         sptObj488.ParamsFilterFits.MinPhotons=.0001; 
        sptObj488.ParamsFilterFits.MinPValue= minPValue_488; 
        sptObj488.filterFits; 

         
         %to view overlay of fits and raw data (note that fits are 

shifted already) 
        %         sptObj488.plotFitResults %plot results to compare 
        %          sptObj488.SaveBaseName=fullfile(savedir,[svfilename 
        %          '_488.mat']); --don't actually need this 
        sptObj488.saveFile(0); 

         
        % create gaussian blob series of 488 data (no shifting) 
        TrackXY488=[sptObj488.FitResults(1).xCoord(:,1) 

sptObj488.FitResults(1).yCoord(:,1)]; %must be Nx2 matrix 
        end 
        clear blnktot 
        blnk=dip_image(zeros(256,256)); 
        if size(TrackXY488,1) == 1  % if statement added to avoid 

creating a 2D instead of a 3D dip image when there are no spots 
            blnktot= dip_image(zeros(256,256,2)); 
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            blnktot= blnktot(:,:,1); 
        else 
            blnktot=dip_image(zeros(256,256,size(TrackXY488,1))); 
        end 
        for kk=1:size(TrackXY488,1) 
            blnktot(:,:,kk-

1)=gaussianblob(blnk,TrackXY488(kk,:),1,5000,'spatial',3); 
        end 
        tots488=sum(blnktot,[],3); 

         

         

         

         
        %use SPT to find positions of 561 channel 
        params=load(paramsfile); 
        sptObj561=SPT; 
        sptObj561.DataFile=fullfile(savedir,[svfilename '_561.mat']) 
        sptObj561.setParams(params); 
        

sptObj561.ParamsFindBoxCenters.MinPhotons=size(currfrms,2)*intperframe_

561; %have intensity value proportional to # of frames summed 
%         sptObj561.ParamsFindBoxCenters.maxPixelRegionSize=1; % change 
        sptObj561.findBoxCenters 
        % To prevent error if there are no spots in the image (below is 
        % more code to prevent same error) 
        if size(sptObj561.BoxCenters,1) == 0 
            ShiftedTrackXY561 = []; 
            TrackXY561 = []; 

             
        else 
%         sptObj561.ParamsFilterFits.MinPhotons=.0001; 
        sptObj561.ParamsFilterFits.MinPValue= minPValue_561; 
        sptObj561.filterFits; 
        %         sptObj561.plotFitResults %plot results to compare 
        %         sptObj561.SaveBaseName=fullfile(savedir,[svfilename 

'_561.mat']); --don't actually need this 
        sptObj561.saveFile(0); % save .spt files 

         
        % Shift tracks from 561 channel 
        TrackXY561=[sptObj561.FitResults(1).xCoord(:,1) 

sptObj561.FitResults(1).yCoord(:,1)]; %must be Nx2 matrix 
        % Adding SXS pixels shifts channel 2 x-coordinates from 

relative coordinates 
        % with channel 2 in isolation back to the absolute coordinates 

used to 
        % construct the map with the channels side-by-side.  The 

mapping then 
        % transforms channel 2 into the coordinate space of channel 1. 
        [ ShiftedTrackXY561 ] = M561([TrackXY561(:, 1) + SXS, 

TrackXY561(:, 2)]); 
        save(fullfile(savedir,[svfilename '_561shiftedvals.mat']), 

'ShiftedTrackXY561'); %save shifted values 
        end 

         
        % create gaussian blob series of shifted data 
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        % Code modified to prevent error when 1 spot 
        clear blnktot 
        blnk=dip_image(zeros(256,256)); 
        if size(ShiftedTrackXY561,1) == 1  % if statement added to 

avoid creating a 2D instead of a 3D dip image when there are no spots 
            blnktot= dip_image(zeros(256,256,2)); 
            blnktot= blnktot(:,:,1); 
        else 
            

blnktot=dip_image(zeros(256,256,size(ShiftedTrackXY561,1))); 
        end 

        
        for kk=1:size(ShiftedTrackXY561,1) 
            blnktot(:,:,kk-

1)=gaussianblob(blnk,ShiftedTrackXY561(kk,:),1,5000,'spatial',3); 
        end 
        tots561=sum(blnktot,[],3); 
%          joinchannels('rgb',c(0:255,:),squeeze(tots561)*10) %-- 

uncomment 

         

         

         

         
        %use SPT to find positions of 642 channel 
        params=load(paramsfile); 
        sptObj642=SPT; 
        sptObj642.DataFile=fullfile(savedir,[svfilename '_642.mat']) 
        sptObj642.setParams(params); 
        

sptObj642.ParamsFindBoxCenters.MinPhotons=size(currfrms,2)*intperframe_

642; %have intensity value proportional to # of frames summed 
%         sptObj642.ParamsFindBoxCenters.maxPixelRegionSize=1; % change 
        sptObj642.findBoxCenters 
        % To prevent error if there are no spots in the image (below is 
        % more code to prevent same error) 
        if size(sptObj642.BoxCenters,1) == 0 
            ShiftedTrackXY642 = []; 
            TrackXY642 = []; 

             
        else 
%         sptObj642.ParamsFilterFits.MinPhotons=.0001; 
        sptObj642.ParamsFilterFits.MinPValue= minPValue_642; 
        sptObj642.filterFits; 
        %         sptObj642.plotFitResults %plot results to compare 
        %         sptObj642.SaveBaseName=fullfile(savedir,[svfilename 

'_642.mat']); --don't actually need this 
        sptObj642.saveFile(0); % save .spt files 

         
        % Shift tracks from 642 channel 
        TrackXY642=[sptObj642.FitResults(1).xCoord(:,1) 

sptObj642.FitResults(1).yCoord(:,1)]; %must be Nx2 matrix 
        % Adding SXS pixels shifts channel 2 x-coordinates from 

relative coordinates 
        % with channel 2 in isolation back to the absolute coordinates 

used to 
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        % construct the map with the channels side-by-side.  The 

mapping then 
        % transforms channel 2 into the coordinate space of channel 1. 
        [ ShiftedTrackXY642 ] = M642([TrackXY642(:, 1) + SXS, 

TrackXY642(:, 2)]);         
        save(fullfile(savedir,[svfilename '_642shiftedvals.mat']), 

'ShiftedTrackXY642'); %save shifted values 
        end 

         
        % create gaussian blob series of shifted data 
        % Code modified to prevent error when 1 spot 
        clear blnktot 
        blnk=dip_image(zeros(256,256)); 
        if size(ShiftedTrackXY642,1) == 1  % if statement added to 

avoid creating a 2D instead of a 3D dip image when there are no spots 
            blnktot= dip_image(zeros(256,256,2)); 
            blnktot= blnktot(:,:,1); 
        else 
            

blnktot=dip_image(zeros(256,256,size(ShiftedTrackXY642,1))); 
        end 

        
        for kk=1:size(ShiftedTrackXY642,1) 
            blnktot(:,:,kk-

1)=gaussianblob(blnk,ShiftedTrackXY642(kk,:),1,5000,'spatial',3); 
        end 
        tots642=sum(blnktot,[],3); 
%          joinchannels('rgb',c(0:255,:),squeeze(tots642)*10) %-- 

uncomment 

  

  

         

         
        % To prevent error if there are no spots in any of the channels 
        % when trying to overlay shifted blobs  

         
        if size(TrackXY488,1)==0 
            tots488= dip_image(zeros(256,256,2)); 
            tots488= tots488(:,:,1); 
        end 

         

         
        if size(ShiftedTrackXY561,1)==0 
            tots561= dip_image(zeros(256,256,2)); 
            tots561= tots561(:,:,1); 
        end 

         

         
        if size(ShiftedTrackXY642,1)==0 
            tots642= dip_image(zeros(256,256,2));  % if statement added 

to avoid creating a 2D instead of a 3D dip image when there are no 

spots 
            tots642= tots642(:,:,1); 
        end      
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        % overlay shifted blobs on raw data 
        ovlayimage=joinchannels('rgb',tots642,tots488,tots561); 
        h_raw=dipshow(ovlayimage); % use to show the image 

         
        % save shifted images 
        saveas(h_raw,fullfile(savedirFigs,[svfilename 

'_overlayedchannels.fig']),'fig') 
        saveas(h_raw,fullfile(savedirFigs,[svfilename 

'_overlayedchannels.png']),'png') 
%         close(h)% close image after saving 

         

  
        % Calculate number of spots in 561 channel overlapping with 

spots in 488 channel  
        clear blnktot 

         
        if size(ShiftedTrackXY561,1) <= 1  % "if" statement added to 

avoid creating a 2D instead of a 3D dip image when there are only 1 or 

no spots 
            blnktot= dip_image(zeros(256,256,2)); 
            blnktot= blnktot(:,:,1); 
        else 
            

blnktot=dip_image(zeros(256,256,size(ShiftedTrackXY561,1))); 
        end 
        numoverlap561w488 = 0; % number of overlapping blobs 
        pixallow = 1.0; % number of pixels allowed to be shifted 

between overlapping blobs to consider them as being the same molecule 

  
        for mm=1:size(ShiftedTrackXY561,1) 
            for nn=1:size(TrackXY488,1) 
                if abs(ShiftedTrackXY561(mm,:)-TrackXY488(nn,:)) < 

pixallow 
                    numoverlap561w488 = numoverlap561w488+1;  
                    blnktot(:,:,mm-

1)=gaussianblob(blnk,ShiftedTrackXY561(mm,:),1,5000,'spatial',3); 
                end 
            end 
        end 
        tots561ov488=sum(blnktot,[],3); % image with total overlapping 

blobs in left channel 

  

         

         
        % Calculate number of spots in 642 channel overlapping with 

spots in 488 channel  
        clear blnktot 

         
        if size(ShiftedTrackXY642,1) <= 1  % "if" statement added to 

avoid creating a 2D instead of a 3D dip image when there are only 1 or 

no spots 
            blnktot= dip_image(zeros(256,256,2)); 
            blnktot= blnktot(:,:,1); 
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        else 
            

blnktot=dip_image(zeros(256,256,size(ShiftedTrackXY642,1))); 
        end 
        numoverlap642w488 = 0; % number of overlapping blobs 
        pixallow = 1.0; % number of pixels allowed to be shifted 

between overlapping blobs to consider them as being the same molecule 

  
        for mm=1:size(ShiftedTrackXY642,1) 
            for nn=1:size(TrackXY488,1) 
                if abs(ShiftedTrackXY642(mm,:)-TrackXY488(nn,:)) < 

pixallow 
                    numoverlap642w488 = numoverlap642w488+1;  
                    blnktot(:,:,mm-

1)=gaussianblob(blnk,ShiftedTrackXY642(mm,:),1,5000,'spatial',3); 
                end 
            end 
        end 
        tots642ov488=sum(blnktot,[],3); % image with total overlapping 

blobs in left channel 

         

         

         
        % Calculate number of spots in 642 channel overlapping with 

spots in 561 channel  
        clear blnktot 

         
        if size(ShiftedTrackXY642,1) <= 1  % "if" statement added to 

avoid creating a 2D instead of a 3D dip image when there are only 1 or 

no spots 
            blnktot= dip_image(zeros(256,256,2)); 
            blnktot= blnktot(:,:,1); 
        else 
            

blnktot=dip_image(zeros(256,256,size(ShiftedTrackXY642,1))); 
        end 
        numoverlap642w561 = 0; % number of overlapping blobs 
        pixallow = 1.0; % number of pixels allowed to be shifted 

between overlapping blobs to consider them as being the same molecule 

  
        for mm=1:size(ShiftedTrackXY642,1) 
            for nn=1:size(ShiftedTrackXY561,1) 
                if abs(ShiftedTrackXY642(mm,:)-ShiftedTrackXY561(nn,:)) 

< pixallow 
                    numoverlap642w561 = numoverlap642w561+1;  
                    blnktot(:,:,mm-

1)=gaussianblob(blnk,ShiftedTrackXY642(mm,:),1,5000,'spatial',3); 
                end 
            end 
        end 
        tots642ov561=sum(blnktot,[],3); % image with total overlapping 

blobs in left channel 
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        % Calculate number of spots overlapping in the three channels 

(488, 561 and 642) 
        clear blnktot 

         
        if size(ShiftedTrackXY642,1) <= 1  % "if" statement added to 

avoid creating a 2D instead of a 3D dip image when there are only 1 or 

no spots 
            blnktot= dip_image(zeros(256,256,2)); 
            blnktot= blnktot(:,:,1); 
        else 
            

blnktot=dip_image(zeros(256,256,size(ShiftedTrackXY642,1))); 
        end 
        numTripleOverlap = 0; % number of overlapping blobs 
        coordTripleOv = zeros(size(TrackXY488,1),2); % empty array to 

place coordinates of 488 with triple overlap 
        pixallow = 1.0; % number of pixels allowed to be shifted 

between overlapping blobs to consider them as being the same molecule 

  
        for mm=1:size(ShiftedTrackXY642,1) 
            for nn=1:size(ShiftedTrackXY561,1) 
                if abs(ShiftedTrackXY642(mm,:)-ShiftedTrackXY561(nn,:)) 

< pixallow 
                    % If 642 spot overlaps with 561, then loop through 

the 
                    % 488 spots to check if it also overlaps with 488 

spot 
                    for nnTriple=1:size(TrackXY488,1) 
                        if abs(ShiftedTrackXY642(mm,:)-

TrackXY488(nnTriple,:)) < pixallow 
                            numTripleOverlap = numTripleOverlap+1; 
                            coordTripleOv(numTripleOverlap,:)= 

TrackXY488(nnTriple,:); % store number of tracks in 488 channel that 

have triple overlap 
                            blnktot(:,:,mm-

1)=gaussianblob(blnk,ShiftedTrackXY642(mm,:),1,5000,'spatial',3); 
                        end 
                    end 

                                         
                end 
            end 
        end 
        totsTripleOverlap=sum(blnktot,[],3); % image with total 

overlapping blobs in left channel 

         
        % Remove rows with all zeros and save coordinates 
        coordTripleOv(all(coordTripleOv==0,2),:)=[]; 
        save(fullfile(savedir,[svfilename 

'_488_tripleOverlapCoord.mat']), 'coordTripleOv'); 

  

         

         
        % Display image with only of those spots overlapping with the 

ones 
        % in 488 channel 
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        if isempty(tots642ov488)==0 || isempty(tots561ov488)==0 
        

ovlayOnly=joinchannels('rgb',tots642ov488,tots488,tots561ov488); % 

shows all green blobs and only those red (642) and blue (561) blobs 

that overlay 
        h_ovlayOnly=dipshow(ovlayOnly); % use to show the image 
        saveas(h_ovlayOnly,fullfile(savedirFigs,[svfilename 

'_overlayW488only.png']),'png') 
        else 
        end 

         
%         % Display image with only of those 642 spots overlapping with 

the ones 
%         % in 561 channel 
%         if isempty(tots642ov561)==0 
%         ovlayOnly=joinchannels('rgb',tots642ov561,tots488,tots561); % 

shows all green blobs and only those red blobs that overlay 
%         h_ovlayOnly=dipshow(ovlayOnly); % use to show the image 
%         saveas(h_ovlayOnly,fullfile(savedirFigs,[svfilename 

'_overlaySpotsOnly.png']),'png') 
%         else 
%         end 

         

         
        % For reference below are the current column identifiers for 

the 
        % cell array or spread sheet 
%         colIdent= {'FileName', '488-fits','561-fits','642-fits',... 
%         '488-561-overlaps','488-642-overlaps','561-642-

overlaps','Triple-overlap',... 
%         '% 488 w/561','Average %','% 488 w/642','Average %','% 488 

w/561-642','Average %',... 
%         '% 488-561 w/642','Average %','% 488-642 w/561','Average %'}; 

  
        % Concatenate results to cell array (see column identifiers 

above) 
        % Add 1 (+1) to absFrameNum to count for column identifiers 
        

valuecell(absFrameNum+1,:)={svfilename,size(TrackXY488,1),size(TrackXY5

61,1),size(TrackXY642,1)... 
            

,numoverlap561w488,numoverlap642w488,numoverlap642w561,numTripleOverlap

,... 
            

numoverlap561w488/size(TrackXY488,1)*100,'',numoverlap642w488/size(Trac

kXY488,1)*100,'',numTripleOverlap/size(TrackXY488,1)*100,'',... 
            

numTripleOverlap/numoverlap561w488*100,'',numTripleOverlap/numoverlap64

2w488*100,''};  

         
        % Create overlayed localizations and raw data 
        locMask= newim(512,512); % Create figure to save mask with 

localizations 
        locMask(256:end,0:255)= squeeze(tots488>600); % Add mask to 

corresponding areas/channel 
        locMask(0:255,0:255)= squeeze(tots561>600); 
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        locMask(0:255,256:511)= squeeze(tots642>600);           

         
        h_rawOverlay=dipshow(overlay(test_642,locMask,[15000,0,0])); % 

use to show the image 
        saveas(h_rawOverlay,fullfile(savedirFigs,[svfilename 

'_rawOverlayLoc.fig']),'fig') 

         

  
    end 
    close all 
end 

  

  

  
%after loop write to excel and matlab files 
xlswrite([filedir '\results.xls'],valuecell) % data saved in excel file 
save([filedir '\results.mat'],'valuecell','coordTripleOv') % data saved 

in matlab file 

  
cd scripts % change current directory back to scripts folder 
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APPENDIX B: BNGL files of rule-based models 

 

BNGL file for model in Chapter 4 

begin model 
 
 
# References 
# 1. Hause et al., 2012. Plos ONE. 
# 2. Engelmann BW et al., 2014. Mol Cell Proteomics. 
# 3. Kulak NA et al. (2014) Nat Methods 11: 319-324. 
# 4. Shankaran H. et al., 2012. Molecular BioSystems. 
# for plasma membrane the ref. is Hendriks 2003 (Cancer Research) and for 
endosomes (pH 6.0) from French 1995 
# 5. Kholodenko B.N. et al., 1999. The Journal of Biological Chemistry 
# 6. Blinov M.L. et al., 2006. BioSystems 
# 7. Chook, Yuh Min, et al. "The Grb2-mSos1 complex binds phosphopeptides with 
higher affinity than  
#    Grb2." Journal of Biological Chemistry 271.48 (1996): 30472-30478. 
# 8. Macdonald JL, Pike LJ (2008) Proc Natl Acad Sci USA 105: 112-117. 
# 9. Macdonald-Obermann JL, Pike LJ (2009) J Biol Chem 284: 13570-13576. 
# 10. Elleman TC et al. (2001) Biochemistry 40: 8930-8939. 
# 11. Low-Nam ST et al. (2011) Nat Struct Mol Biol 18: 1244-1249. 
# 12. Kleiman LB et al. (2011) Mol Cell 43: 723Ð737. 
# 13. Kim Y et al. (2012) Biochemistry 51 (25). American Chemical Society: 
5212–22. 
# 14. Morimatsu, Miki, et al. "Multiple-state reactions between the epidermal 
growth factor 
#  receptor and Grb2 as observed by using single-molecule analysis." 
Proceedings of the National  
#  Academy of Sciences 104.46 (2007): 18013-18018. 
# 15. Reddy, Raven J., et al. "Early signaling dynamics of the epidermal 
growth  
#  factor receptor." Proceedings of the National Academy of Sciences 113.11 
(2016): 3114-3119. 
 
 
begin parameters 
 
GRB2_total__FREE__ 3.50998295e+04 # Vary between 1e4 and 1e6 copies per cell 
SHC1_total__FREE__ 4.72130741e+05 # Vary between 1e4 and 1e6 copies per cell 
kdephos1068__FREE__ 1.83276225e+00 # Vary between 0.01 and 10 
kphos1068__FREE__ 6.23793050e-01 # Vary between 0.01 and 10 
 
 
 
# Keep constant 
 
kon__ 5.0e6 # Assumed to be 5.0e6 /M/s 
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kon_EGF__ 8.0e6 # This rate was set so EGFR phosphorylation kinetics occurs 
similarly as observed by Reddy et. al (2016) 
Kd_EGF__ 1.0e-9 # A typical value of 1 nM for the EGF dissociation constant 
was used 
ratio_kdephos__ 1.0 # Equal phosphoryaltion rates for pY1068 and pY1173 were 
assumed 
ratio_kphos__ 1.0 # Equal dephosphoryaltion rates for pY1068 and pY1173 were 
assumed 
 
 
 
 
# Avogadro constant 
NA 6.02214e23 # [=] molecules per mol 
 
# Fraction of cell to consider in a stochastic simulation 
f 1 # [=] dimensionless, 0<=f<=1  
 
 
# Cytoplasmic volume 
#   A volume of 1 to 2 pL is typical for a mammalian cell. 
Vc f*1.0e-12 # [=] L (1.0 pL) 
 
# Number of cells per dish 
numCells 1.0e7 # [=] cells per 60 mm^2 dish (10 million)  
 
# Volume of media per dish 
volMedia 1.0e-2 # [=] L (10 mL) 
 
# Volume of extracellular fluid surrounding a cell 
Vextra=f*volMedia/numCells 
 
 
GRB2_total   GRB2_total__FREE__*f # [=] molecules per cell 
EGFR_total 6.0e5*f # [=] molecules per cell (as estimated by flow cytometry 
for this CHO EGFR-GFP cells) 
SHC1_total   SHC1_total__FREE__*f # [=] molecules per cell 
 
 
 
 
# Concentration of EGF 
EGFconc 0 # [=] M 
# EGFconc 25.0e-9 # [=] M 
 
EGF_total=EGFconc*(NA*Vextra) # [=] molecules per cell 
 
 
 
 
# A typical association rate constant for a protein-protein interaction 
# A value of 1e7/M/s instead of 1e6/M/s (used originally) is closer to the on 
rate estimated in Ref. 14 , which is ~1e7-1e8/M/s 
# This value also allows off rates to be more similar to those estimated in 
Ref. 14. 



www.manaraa.com

111 
 

kon kon__ # [=] /M/s 
 
kon_EGF kon_EGF__ # [=] /M/s 
 
# Dissocation and association rate constants for EGF-EGFR interaction at the 
plasma membrane 
Kd_EGF Kd_EGF__*(NA*Vextra) # [=] molecules . 1.0e-9nM 
kp_EGF=kon_EGF/(NA*Vextra) 
km_EGF=Kd_EGF*kp_EGF 
 
 
# Dissociation constant for EGFR dimerization 
#   This parameter is set so that EGFR_total/KD_dim >> 1 when number of 
receptors is high (e.g. 6.0e5) 
KD_dim 6.0e5/10 # [=] molecules per cell 
 
 
# Dissocation and association rate constants for interaction between two 
liganded (EGF-bound) receptors 
# '_pre' because off rates will be modified by a factor of 'offrate_f'. If 
offrate_f=1 then  
# 'km_dim_L_L_pre' and 'km_dim_L_L' are the same. 
km_dim_L_L_pre 0.273 # [=] /s (Ref 11) 
kp_dim_L_L=km_dim_L_L_pre/KD_dim # [=] /(molecule/cell)/s 
 
 
# Increase off rates by a factor of 'offrate_f' 
offrate_f 1.0 
km_dim_L_L=km_dim_L_L_pre*offrate_f 
 
 
 
# Kd for Grb2-SH2 domain binding to pY1068 EGFR 
Kd_GE 0.6e-6*(NA*Vc) # [=] molecules   , as estimated by Morimatsu et al. 
(2007) 
kp_GE=kon/(NA*Vc) 
km_GE=Kd_GE*kp_GE 
 
 
# Kd for SHC1-PTB domain binding to pY1173 EGFR 
Kd_SE 0.6e-6*(NA*Vc) # [=] molecules , assumed to have equal Kd as Grb2 
kp_SE=kon/(NA*Vc) 
km_SE=Kd_SE*kp_SE 
 
 
 
 
# Generic (pseudo first-order) dephosphorylation rate constant 
# From Ref. 12 we have that dephosphorylation rate of pY-EGFR on cells 
after using gefitinib is 
#  0.05/s, which corresponds to a half-life of 15 s and represents a lower  
#  bound (estimation without considering protection of sites by binding 
proteins and other influencing factors)  
#   When considering Shc binding in the paper they come with a model (M3) with 
1/sec rate for dephosphorylation (and 
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#   2/sec for phosphorylation), which is the same dephos rate I had picked to 
fit our data. 
#   Note: keep in mind that they are using 10uM of gefitinib and according to 
Ref. 13 that concentration would only 
#  inhibit 20-40% of the in vitro kinase activity of EGFR at Y1068, Y1148 and 
Y1173. 
kdephos1068 kdephos1068__FREE__ # 0.15 
 
ratio_kdephos 1.0 
kdephos1173 kdephos1068*ratio_kdephos 
 
# Generic (pseudo first-order) phosphorylation rate constant 
# Value was set to fit experimental behavior observed by SiMPull 
 
kphos1068 kphos1068__FREE__ # 0.043 
 
ratio_kphos 1.0 
kphos1173 kphos1068*ratio_kphos 
 
 
end parameters 
 
begin molecule types 
 
# Ligand, growth factor 
EGF(EGFL) 
 
# Receptor tyrosine kinase, Epidermal growth factor receptor 
#   I_III: domains I and III in the ectodomain for EGF binding 
# II: domain II for dimerization through ectodomain. Dimerization reaction 
will change state of receptor 
# from monomer (unbound) to dimer (bound), and dissociation reaction the 
opposite. 
EGFR(I_III,II~u~b,Y1068~0~P,Y1173~0~P) 
 
# Grb2 adaptor protein. SH3 represents both N- and C-terminus SH3 domains 
GRB2(SH2) 
 
#   SHC-Y317 in the p52 isoform | Y427 in the p66 isoform 
SHC1(PTB) 
 
end molecule types 
 
 
begin seed species 
 
EGF(EGFL) EGF_total 
EGFR(I_III,II~u,Y1068~0,Y1173~0) EGFR_total  
GRB2(SH2) GRB2_total 
SHC1(PTB) SHC1_total 
 
 
end seed species 
 
begin observables 
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Molecules EGF EGF() 
Molecules EGFRtot EGFR() 
Molecules Grb2tot GRB2() 
Molecules Shc1tot SHC1() 
Molecules EGFR_EGF EGFR(I_III!+) 
Molecules monR EGFR(II~u) 
Molecules dimR EGFR(II~b) 
Molecules pY1068 EGFR(Y1068~P!?) 
Molecules pY1173 EGFR(Y1173~P!?) 
Molecules Grb2_EGFR GRB2(SH2!+) 
Molecules Shc1_EGFR SHC1(PTB!+) 
 
Molecules pY1068_pY1173 EGFR(Y1068~P!?,Y1173~P!?) 
 
Molecules monR_pYpY EGFR(II~u,Y1068~P!?,Y1173~P!?) 
Molecules dimR_pYpY EGFR(II~b,Y1068~P!?,Y1173~P!?) 
 
 
 
end observables 
 
 
begin functions 
 
pY1068_percent() 100*pY1068/EGFRtot 
pY1173_percent() 100*pY1173/EGFRtot 
pYpY_per() 100*pY1068_pY1173/EGFRtot 
random_pYpY_per() 100*(pY1068/EGFRtot)*(pY1173/EGFRtot) 
 
monR_pYpY_per() 100*monR_pYpY/(monR+1) # +1 to avoid dividing by 0 
dimR_pYpY_per() 100*dimR_pYpY/(dimR+1) # +1 to avoid dividing by 0 
 
 
 
end functions 
 
 
begin reaction rules 
 
# EGF reversibly binds EGFR 
EGF(EGFL)+EGFR(I_III)<->EGF(EGFL!1).EGFR(I_III!1) kp_EGF,km_EGF 
 
 
# Dimerization of EGFR for: 
# Two EGF-bound receptors. Transition from monomer (II~u) to dimer (II~b) 
states. 
# Simplification: dimerization only happens between two EGF-bound receptors 
EGFR(I_III!+,II~u)+EGFR(I_III!+,II~u)->EGFR(I_III!+,II~b)+EGFR(I_III!+,II~b) 
kp_dim_L_L 
 
 
 
# Dissociation of EGFR dimer. 
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# Simplification: dimer dissociation occurs equally regardless of how many 
receptors are EGF-bound (remember EGF can dissociate while in a dimer) 
EGFR(II~b)->EGFR(II~u) km_dim_L_L 
 
 
 
# EGFR autophosphorylation 
#   Occurs only within a dimer 
EGFR(II~b,Y1068~0)->EGFR(II~b,Y1068~P) kphos1068 
EGFR(II~b,Y1173~0)->EGFR(II~b,Y1173~P) kphos1173 
 
# Unregulated dephosphorylation of pTyr sites 
#   (mediated by constitutively active phosphatases) 
EGFR(Y1068~P)->EGFR(Y1068~0) kdephos1068 
EGFR(Y1173~P)->EGFR(Y1173~0) kdephos1173 
 
 
# Binding of Grb2 to pY1068 in EGFR 
GRB2(SH2)+EGFR(Y1068~P)<-> GRB2(SH2!1).EGFR(Y1068~P!1) kp_GE,km_GE 
 
 
# Binding of SHC1 to pY1173 in EGFR 
SHC1(PTB)+EGFR(Y1173~P)<-> SHC1(PTB!1).EGFR(Y1173~P!1) kp_SE,km_SE 
 
 
 
end reaction rules 
 
end model 
 
begin actions 
 
generate_network({overwrite=>1}) 
 
# Save parameters and concentrations before parameter scan 
#saveParameters() 
#saveConcentrations("pre_scan") 
 
# Perform a parameter scan for EGF ligand concentrations 
#parameter_scan({suffix=>"dose_resp",parameter=>"EGFconc",par_scan_vals=>[0.05
e-9,0.1e-9,0.5e-9,1.0e-9,2.5e-9,5.0e-9,10.0e-9,50.0e-9],\ 
#                
method=>"ode",t_start=>0,t_end=>600,n_steps=>600,print_functions=>1}) 
                 
parameter_scan({suffix=>"dose_resp",parameter=>"EGFconc",par_scan_vals=>[0.05e
-9,0.167e-9,0.5e-9,1.67e-9,5.0e-9,16.7e-9,50.0e-9],\ 
                
method=>"ode",t_start=>0,t_end=>120,n_steps=>3,print_functions=>1}) 
 
 
 
# Reset parameters and concentrations to those before parameter scan 
#resetParameters() 
#resetConcentrations("pre_scan") 
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# Equilibrate for 300 seconds 
#simulate({suffix=>"equil",method=>"ode",t_start=>0,t_end=>300,n_steps=>300,pr
int_functions=>1}) 
 
 
# Add 25 nM EGF, and simulate for 300 seconds 
setParameter("EGFconc","25.0e-9") 
setConcentration("EGF(EGFL)","EGF_total") 
simulate({suffix=>"EGF_25nM",method=>"ode",t_start=>0,t_end=>300,n_steps=>300,
print_functions=>1}) 
 
end actions 
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BNGL file for model in Chapter 5 

 

begin model 
 
 
# References 
# 1. Hause et al., 2012. Plos ONE. 
# 2. Engelmann BW et al., 2014. Mol Cell Proteomics. 
# 3. Kulak NA et al. (2014) Nat Methods 11: 319-324. 
# 4. Shankaran H. et al., 2012. Molecular BioSystems. 
# for plasma membrane the ref. is Hendriks 2003 (Cancer Research) and for 
endosomes (pH 6.0) from French 1995 
# 5. Kholodenko B.N. et al., 1999. The Journal of Biological Chemistry 
# 6. Blinov M.L. et al., 2006. BioSystems 
# 7. Chook, Yuh Min, et al. "The Grb2-mSos1 complex binds phosphopeptides with 
higher affinity than  
#    Grb2." Journal of Biological Chemistry 271.48 (1996): 30472-30478. 
# 8. Macdonald JL, Pike LJ (2008) Proc Natl Acad Sci USA 105: 112-117. 
# 9. Macdonald-Obermann JL, Pike LJ (2009) J Biol Chem 284: 13570-13576. 
# 10. Elleman TC et al. (2001) Biochemistry 40: 8930-8939. 
# 11. Low-Nam ST et al. (2011) Nat Struct Mol Biol 18: 1244-1249. 
# 12. Kleiman LB et al. (2011) Mol Cell 43: 723Ð737. 
# 13. Kim Y et al. (2012) Biochemistry 51 (25). American Chemical Society: 
5212–22. 
# 14. Morimatsu M et al. (2007) PNAS  104 (46): 18013–18. 
# 15. Tujin Shi, Mario Niepel,.., Peter K. Sorger, Wei-Jun Qian, H. Steven 
Wiley.  
#     Conservation of Protein Abundance Patterns Reveals the Regulatory 
Architecture of the EGFR-MAPK Pathway. 
#   Work in preparation to be submitted to Science Signaling.  
# 16. Sun Q et al. (2010) PloS one 5, no. 9 (2010): e12819 
# 17. Reddy, Raven J., et al. "Early signaling dynamics of the epidermal 
growth  
#  factor receptor." Proceedings of the National Academy of Sciences 113.11 
(2016): 3114-3119. 
 
begin parameters 
 
 
alpha_Ub__FREE__ 1 # Vary between 20 and 100 for low Ub, or 1 and 4 for high 
Ub 
alpha_pY1045__FREE__ 1 # Vary between 1 and 100 
kub__FREE__ 5.25555397e-02 # Vary between 0.001 and 0.1 
kdeub__FREE__ 1.71408252e-02 # Vary between 0.001 and 0.1 
Kd_CE__FREE__ 2.51475699e-07 # Vary between 0.1e-6 and 10.0e-6 M (0.1 uM to 10 
uM) 
Kd_CG__FREE__ 7.23610301e-07 # Vary between 0.1e-6 and 10.0e-6 M (0.1 uM to 10 
uM) 
kc__FREE__ 2.59365139e+08 # Vary between 5E5 5E8 
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# Keep constant 
 
alpha_CE__ 1 # Vary between 1 and 2 
alpha_pYpY__ 1 # Vary between 1 and 100 
 
 
CBL_total__ 5e3 # 5,000 copies per cell (from Capuani 2015) 
kon__ 5.0e6 # Assumed to be 5.0e6 /M/s 
kon_EGF__ 0.8e7 # # This rate was set so EGFR phosphorylation kinetics occurs 
similarly as observed by Reddy et. al (2016) 
Kd_EGF__ 1.0e-9 # A typical value of 1 nM for the EGF dissociation constant 
was used 
Kd_GE__ 0.6e-6 # 600 nM as estimated by Morimatsu et al. (2007) 
kdephos1068__ 1.83276225e+00 # Estimated by fitting to SiMPull data 
kphos1068__ 6.23793050e-01 # Estimated by fitting to SiMPull data 
ratio_kdephos__ 1.0 # Equal phosphoryaltion rates for pY1045 and pY1068 were 
assumed 
ratio_kphos__ 1.0 # Equal phosphoryaltion rates for pY1045 and pY1068 were 
assumed 
 
 
 
# Scaling factors for BioNetFit 
alpha_Ub alpha_Ub__FREE__ 
 
alpha_CE alpha_CE__ 
alpha_pY1045 alpha_pY1045__FREE__ 
alpha_pYpY alpha_pYpY__ 
 
 
# Avogadro constant 
NA 6.02214e23 # [=] molecules per mol 
 
# Fraction of cell to consider in a stochastic simulation 
f 1 # [=] dimensionless, 0<=f<=1  
 
 
# Cytoplasmic volume 
#   A volume of 1 to 2 pL is typical for a mammalian cell. 
Vc f*1.0e-12 # [=] L (1.0 pL) 
 
# Number of cells per dish 
numCells 1.0e7 # [=] cells per 60 mm^2 dish (10 million)  
 
# Volume of media per dish 
volMedia 1.0e-2 # [=] L (10 mL) 
 
# Volume of extracellular fluid surrounding a cell 
Vextra=f*volMedia/numCells 
 
 
GRB2_total   1.0e6*f # [=] molecules per cell 
EGFR_total 2.5e5*f # [=] molecules per cell (3e5 from Capuani 2015) 
# Abundance of Cbl in several cell lines have been estimated to be 9,000-
15,000 copies/cell (Refs. 3 and 15) 
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CBL_total  CBL_total__*f*1 # [=] molecules per cell. (5.2e3 from Capuani 
2015) 
 
 
 
 
# Concentration of EGF 
EGFconc 0 # [=] M 
# EGFconc 25.0e-9 # [=] M 
 
EGF_total=EGFconc*(NA*Vextra) # [=] molecules per cell 
 
 
 
# A typical association rate constant for a protein-protein interaction 
# A value of 1e7/M/s instead of 1e6/M/s (used originally) is closer to the on 
rate estimated in Ref. 14 , which is ~1e7-1e8/M/s 
# This value also allows off rates to be more similar to those estimated in 
Ref. 14. 
kon kon__ # [=] /M/s 
 
kon_EGF kon_EGF__ # [=] /M/s 
 
# Dissocation and association rate constants for EGF-EGFR interaction at the 
plasma membrane 
Kd_EGF Kd_EGF__*(NA*Vextra) # [=] molecules . 1.0e-9nM 
kp_EGF=kon_EGF/(NA*Vextra) 
km_EGF=Kd_EGF*kp_EGF 
 
 
# Dissociation constant for EGFR dimerization 
#   This parameter is set so that EGFR_total/KD_dim >> 1 when number of 
receptors is high (e.g. 6.0e5) 
KD_dim 6.0e5/10 # [=] molecules per cell 
 
 
# Dissocation and association rate constants for interaction between two 
liganded (EGF-bound) receptors 
# '_pre' because off rates will be modified by a factor of 'offrate_f'. If 
offrate_f=1 then  
# 'km_dim_L_L_pre' and 'km_dim_L_L' are the same. 
km_dim_L_L_pre 0.273 # [=] /s (Ref 11) 
kp_dim_L_L=km_dim_L_L_pre/KD_dim # [=] /(molecule/cell)/s 
 
 
# Increase off rates by a factor of 'offrate_f' 
offrate_f 1.0 
km_dim_L_L=km_dim_L_L_pre*offrate_f 
 
 
 
# Kd for Grb2-SH2 domain binding to pY1068 EGFR 
Kd_GE Kd_GE__*(NA*Vc) # [=] molecules   , (2.6e-6*(NA*Vc)) from Ref. 1 
kp_GE=kon/(NA*Vc) 
km_GE=Kd_GE*kp_GE 
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# Kd for Cbl-TKB domain binding to pY1045 EGFR 
Kd_CE=Kd_CE__FREE__*(NA*Vc) # [=] molecules , (1.0e-6*(NA*Vc)) from Ref. 16 
kp_CE=kon/(NA*Vc) 
km_CE=Kd_CE*kp_CE 
 
# Kd for Cbl-PR region constitutive binding to the SH3 domains of Grb2 
Kd_CG=Kd_CG__FREE__*(NA*Vc) # [=] molecules , from Ref. 16 
kp_CG=kon/(NA*Vc) 
km_CG=Kd_CG*kp_CG 
 
# Cooperativity constant. In this case, association rates will be multiplied 
by this constant to account for the  
# increased local concentration, which in our context is the result of being 
bound to the same molecular complex 
kc kc__FREE__ 
 
# Association constants for reactions with cooperativity 
# Grb2-SH2 domain binding to pY1068 or pY1086 EGFR when Grb2 is complexed with 
a Cbl molecule bound to EGFR 
kp_GE_c=kp_GE*kc 
# Cbl-TKB domain binding to pY1045 EGFR when Cbl is complexed with a Grb2 
molecule bound to EGFR (at pY1068 or pY1086) 
kp_CE_c=kp_CE*kc 
# Cbl-PR region binding to the SH3 domains of Grb2 when both molecules are 
bound to the same receptor (Grb2 bound to pY1068 or pY1086) 
kp_CG_c=kp_CG*kc 
 
 
 
 
# Generic (pseudo first-order) dephosphorylation rate constant 
# From Ref. 12 we have that dephosphorylation rate of pY-EGFR on cells 
after using gefitinib is 
#  0.05/s, which corresponds to a half-life of 15 s and represents a lower  
#  bound (estimation without considering protection of sites by binding 
proteins and other influencing factors)  
#   When considering Shc binding in the paper they come with a model (M3) with 
1/sec rate for dephosphorylation (and 
#   2/sec for phosphorylation), which is the same dephos rate I had picked to 
fit our data. 
#   Note: keep in mind that they are using 10uM of gefitinib and according to 
Ref. 13 that concentration would only 
#  inhibit 20-40% of the in vitro kinase activity of EGFR at Y1068, Y1148 and 
Y1173. 
kdephos1068 kdephos1068__ # 0.15 
 
ratio_kdephos ratio_kdephos__ 
kdephos1045 kdephos1068*ratio_kdephos 
 
# Generic (pseudo first-order) phosphorylation rate constant 
# Value was set to fit experimental behavior observed by SiMPull 
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kphos1068 kphos1068__ # 0.043 
 
ratio_kphos ratio_kphos__ 
kphos1045 kphos1068*ratio_kphos 
 
 
# Rate of ubiquitination and de-ubiquitination 
kub kub__FREE__ # 0.03 
kdeub kdeub__FREE__ # 0.01 
 
maxValue 20 # Constant value to set max value of Y display in graph 
 
end parameters 
 
begin molecule types 
 
# Ligand, growth factor 
EGF(EGFL) 
 
# Receptor tyrosine kinase, Epidermal growth factor receptor 
#   I_III: domains I and III in the ectodomain for EGF binding 
# II: domain II for dimerization through ectodomain. Dimerization reaction 
will change state of receptor 
# from monomer (unbound) to dimer (bound), and dissociation reaction the 
opposite. 
# Lys_ub: Number of ubiquitin molecules covalently linked to lysines in 
EGFR 
EGFR(I_III,II~u~b,Y1045~0~P,Y1068~0~P,Lys_ub~0~1) 
 
# Grb2 adaptor protein. SH3 represents both N- and C-terminus SH3 domains 
GRB2(SH2,SH3) 
 
 
# CBL E3 ubiquitin-protein ligase. Tyrosine-kinase binding motif (TKB) 
contains a SH2-like domain near N-terminus. 
# Poline-rich (PR) region closer to the C-terminus  
CBL(TKB,PR) 
 
 
end molecule types 
 
 
begin seed species 
 
EGF(EGFL) EGF_total 
EGFR(I_III,II~u,Y1045~0,Y1068~0,Lys_ub~0) EGFR_total  
GRB2(SH2,SH3) GRB2_total 
CBL(TKB,PR) CBL_total 
 
 
end seed species 
 
begin observables 
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Molecules EGF EGF() 
Molecules EGFRtot EGFR() 
Molecules Grb2tot GRB2() 
Molecules Cbltot CBL() 
Molecules Cbl_EGFRpY1045 CBL(TKB!1).EGFR(Y1045~P!1) 
Molecules Cbl_notEGFRpY1045 CBL(TKB) 
Molecules EGFR_EGF EGFR(I_III!+) 
Molecules monR EGFR(II~u) 
Molecules dimR EGFR(II~b) 
Molecules pY1045 EGFR(Y1045~P!?) 
Molecules pY1068 EGFR(Y1068~P!?) 
Molecules Grb2_EGFR GRB2(SH2!+) 
 
Molecules Cbl_Grb2_comp CBL(PR!1).GRB2(SH3!1) 
Molecules pY1045_pY1068 EGFR(Y1045~P!?,Y1068~P!?) 
 
Molecules monR_pYpY EGFR(II~u,Y1045~P!?,Y1068~P!?) 
Molecules dimR_pYpY EGFR(II~b,Y1045~P!?,Y1068~P!?) 
 
Molecules EGFR_ub EGFR(Lys_ub~1) 
 
#Molecules EGFRpY1068_Grb2_Cbl_loop 
GRB2(SH2!3,SH3!1).CBL(PR!1,TKB!2).EGFR(Y1045~P!2,Y1068~P!3) 
#Molecules EGFRpY1068_Grb2_Cbl_open1 
GRB2(SH2,SH3!1).CBL(PR!1,TKB!2).EGFR(Y1045~P!2,Y1068~P) 
#Molecules EGFRpY1068_Grb2_Cbl_open2 
CBL(TKB,PR!1).GRB2(SH3!1,SH2!2).EGFR(Y1068~P!2,Y1045~P) 
#Molecules EGFRpY1068_Grb2_Cbl_open3 
CBL(PR,TKB!1).EGFR(Y1045~P!1,Y1068~P!2).GRB2(SH2!2,SH3) 
 
 
end observables 
 
 
begin functions 
 
pY1045_percent() 100*pY1045/EGFRtot 
pY1068_percent() 100*pY1068/EGFRtot 
pYpY_per() 100*pY1045_pY1068/EGFRtot 
random_pYpY_per() 100*(pY1068/EGFRtot)*(pY1045/EGFRtot) 
Cbl_EGFR_per() 100*Cbl_EGFRpY1045/Cbltot 
 
monR_pYpY_per() 100*monR_pYpY/(monR+1) # +1 to avoid dividing by 0 
dimR_pYpY_per() 100*dimR_pYpY/(dimR+1) # +1 to avoid dividing by 0 
 
BNF_Cbl_EGFR_per() alpha_CE*100*Cbl_EGFRpY1045/Cbltot 
BNF_pY1045_per() alpha_pY1045*100*pY1045/EGFRtot 
BNF_pYpY_per() alpha_pYpY*100*pY1045_pY1068/EGFRtot 
 
 
# Percent of receptors ubiquitinated 
Ubiq_EGFR_per() 100*EGFR_ub/EGFRtot 
BNF_Ub1_EGFR_per() alpha_Ub*100*EGFR_ub/EGFRtot # Ub1 is for WT 
BNF_Ub2_EGFR_per() alpha_Ub*2.5*100*EGFR_ub/EGFRtot # Ub2 is for Y1045+ mutant 
(no-cooperativity) (multiply by 2.5 because max should be 40) 
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end functions 
 
 
begin reaction rules 
 
# EGF reversibly binds EGFR 
EGF(EGFL)+EGFR(I_III)<->EGF(EGFL!1).EGFR(I_III!1) kp_EGF,km_EGF 
 
 
# Dimerization of EGFR for: 
# Two EGF-bound receptors. Transition from monomer (II~u) to dimer (II~b) 
states. 
# Simplification: dimerization only happens between two EGF-bound receptors 
EGFR(I_III!+,II~u)+EGFR(I_III!+,II~u)->EGFR(I_III!+,II~b)+EGFR(I_III!+,II~b) 
kp_dim_L_L 
 
 
 
# Dissociation of EGFR dimer. 
# Simplification: dimer dissociation occurs equally regardless of how many 
receptors are EGF-bound (remember EGF can dissociate while in a dimer) 
EGFR(II~b)->EGFR(II~u) km_dim_L_L 
 
 
 
# EGFR autophosphorylation 
#   Occurs only within a dimer 
EGFR(II~b,Y1045~0)->EGFR(II~b,Y1045~P) kphos1045 
EGFR(II~b,Y1068~0)->EGFR(II~b,Y1068~P) kphos1068 
 
# Unregulated dephosphorylation of pTyr sites 
#   (mediated by constitutively active phosphatases) 
EGFR(Y1045~P)->EGFR(Y1045~0) kdephos1045 
EGFR(Y1068~P)->EGFR(Y1068~0) kdephos1068 
 
 
# Binding of Grb2 to pY1068 in EGFR when it is free in solution, either as 
Grb2 or Cbl-Grb2 complex. 
# In the model Grb2 cannot bind to both pY1068 and pY1086 simultaneously 
# You need to specify each molecular complex specifically to avoid duplicate 
rules 
GRB2(SH2,SH3)+EGFR(Y1068~P)<-> GRB2(SH2!1,SH3).EGFR(Y1068~P!1) kp_GE,km_GE 
GRB2(SH2,SH3!1).CBL(PR!1,TKB)+EGFR(Y1068~P)<-> 
GRB2(SH2!2,SH3!1).CBL(PR!1,TKB).EGFR(Y1068~P!2) kp_GE,km_GE 
 
 
 
# Binding of CBL to pY1045 in EGFR when it is free in solution, either as Cbl 
or Cbl-Grb2 complex 
CBL(TKB,PR)+EGFR(Y1045~P) <-> CBL(TKB!1,PR).EGFR(Y1045~P!1) kp_CE,km_CE 
CBL(TKB,PR!1).GRB2(SH2,SH3!1)+EGFR(Y1045~P) <-> 
CBL(TKB!2,PR!1).GRB2(SH2,SH3!1).EGFR(Y1045~P!2) kp_CE,km_CE 
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# Constitutive association of CBL proline-rich region to the SH3 domains of 
Grb2 
# When both CBL and GRB2 are free in solution 
CBL(TKB,PR)+GRB2(SH2,SH3) <-> CBL(TKB,PR!1).GRB2(SH2,SH3!1) kp_CG,km_CG 
# When either one of them is bound to pYEGFR and the other one free in 
solution 
CBL(TKB!+,PR)+GRB2(SH2,SH3) <-> CBL(TKB!+,PR!1).GRB2(SH2,SH3!1) kp_CG,km_CG 
CBL(TKB,PR)+GRB2(SH2!+,SH3) <-> CBL(TKB,PR!1).GRB2(SH2!+,SH3!1) kp_CG,km_CG 
 
 
# Association reactions having cooperativity. The following reactions occur 
between molecules bound 
# to the same molecular complexes, this increases the local concentration of 
the reactants and therefore 
# the association rates 
 
# Cooperative binding of Grb2 to pY1068 and pY1086 in EGFR   
# In the model Grb2 cannot bind to both pY1068 and pY1086 simultaneously 
GRB2(SH2,SH3!1).CBL(PR!1,TKB!2).EGFR(Y1045~P!2,Y1068~P) <-> 
GRB2(SH2!3,SH3!1).CBL(PR!1,TKB!2).EGFR(Y1045~P!2,Y1068~P!3) kp_GE_c,km_GE 
 
# Cooperative binding of CBL to pY1045 in EGFR 
CBL(TKB,PR!1).GRB2(SH3!1,SH2!2).EGFR(Y1068~P!2,Y1045~P) <-> 
CBL(TKB!3,PR!1).GRB2(SH3!1,SH2!2).EGFR(Y1068~P!2,Y1045~P!3) kp_CE_c,km_CE 
 
# Cooperative binding of CBL proline-rich region to the SH3 domains of Grb2 
when both molecules are bount to EGFR 
CBL(PR,TKB!1).EGFR(Y1045~P!1,Y1068~P!2).GRB2(SH2!2,SH3) <-> 
CBL(PR!3,TKB!1).EGFR(Y1045~P!1,Y1068~P!2).GRB2(SH2!2,SH3!3) kp_CG_c,km_CG 
 
 
 
# Ubiquitination of EGFR when Cbl is bound to the receptor (directly or 
through Grb2 bound to pY1068 or pY1086) 
# Direct binding 
EGFR(Y1045~P!+,Lys_ub~0)->EGFR(Y1045~P!+,Lys_ub~1) kub 
# Indirect binding (pY1045 should be free and CBL should have its TKB free) 
EGFR(Y1045,Y1068~P!1,Lys_ub~0).GRB2(SH2!1,SH3!2).CBL(TKB,PR!2)-
>EGFR(Y1045,Y1068~P!1,Lys_ub~1).GRB2(SH2!1,SH3!2).CBL(TKB,PR!2) kub 
 
# De-ubiquitination of EGFR  
EGFR(Lys_ub~1)->EGFR(Lys_ub~0) kdeub 
 
 
 
end reaction rules 
 
end model 
 
begin actions 
 
generate_network({overwrite=>1}) 
 
# Save parameters and concentrations before parameter scan 
#saveParameters() 
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#saveConcentrations("pre_scan") 
 
                 
parameter_scan({suffix=>"dose_resp",parameter=>"EGFconc",par_scan_vals=>[0.05e
-9,0.167e-9,0.5e-9,1.67e-9,5.0e-9,16.7e-9,50.0e-9],\ 
                
method=>"ode",t_start=>0,t_end=>120,n_steps=>3,print_functions=>1}) 
 
# Eliminate Grb2 binding and therefore cooperative recruitment of Cbl 
setParameter("kp_GE",0.0); 
parameter_scan({suffix=>"dose_resp_no_coop",parameter=>"EGFconc",par_scan_vals
=>[0.05e-9,0.167e-9,0.5e-9,1.67e-9,5.0e-9,16.7e-9,50.0e-9],\ 
                
method=>"ode",t_start=>0,t_end=>120,n_steps=>3,print_functions=>1}) 
 
 
# Reset parameters and concentrations to those before parameter scan 
#resetParameters() 
#resetConcentrations("pre_scan") 
 
# Equilibrate for 300 seconds 
#simulate({suffix=>"equil",method=>"ode",t_start=>0,t_end=>300,n_steps=>300,pr
int_functions=>1}) 
 
 
## Add 25 nM EGF, and simulate for 300 seconds 
#setParameter("EGFconc","25.0e-9") 
#setConcentration("EGF(EGFL)","EGF_total") 
#simulate({suffix=>"EGF_25nM",method=>"ode",t_start=>0,t_end=>30,n_steps=>50,p
rint_functions=>1}) 
 
end actions 
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APPENDIX C: Configuration files for parameter estimation (.conf) 

 

Configuration file for model in Chapter 4 

 

############# 

### PATHS ### 

############# 

 

# The directory to which job output will be written 

output_dir=/home/esc1987/Modeling/BioNetFit_v1.1_with_Simulators/output/ 

 

# The BioNetGen executable 

# bng_command=Simulators/BNG2.pl 

bng_command= 
/home/esc1987/Modeling/BioNetFit_v1.1_with_Simulators/Simulators/BNG2.pl 

 

# ESC added the following two lines because NFsim was not able to run 
simulations 

# NFsim for Cygwin 

#nfsim_dir=/home/esc1987/Modeling/NFsim_v1.11/bin 

#nfsim_command=NFsim_x86_64-cygwin 

#nfsim_command=NFsim_i686-cygwin 

 

# The model file to be used in fitting simulations 

model=/home/esc1987/Modeling/BioNetFit_v1.1_with_Simulators/CHO_EGFR/fit
_v1_16/180222_CHO_EGFR.bngl 

 

 

# The experimental data to be fit 

exp_file=/home/esc1987/Modeling/BioNetFit_v1.1_with_Simulators/CHO_EGFR/
fit_v1_16/dose_resp.exp 

exp_file=/home/esc1987/Modeling/BioNetFit_v1.1_with_Simulators/CHO_EGFR/
fit_v1_16/EGF_25nM.exp 
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####################### 

### General Options ### 

####################### 

 

# The job name 

job_name=fit_v1_16_2 

 

# Whether or not to generate plots for best-fit outputs 

make_plots=0 

 

# Number of simulations to run in parallel. 

# Change parellel_count to the number of CPU cores on your machine for 
increased performance. 

parallel_count=5 

 

# Kill a job and continue without it if  process runs longer than walltime. Adjust if 
needed. 

max_walltime=10:00 

 

# Delete files that are no longer needed to save disk space 

# Property not working 

delete_old_files=1 

 

# Ask if you want to overwrite existing existing job output. In this case disable 
ask, that way you can do batch fitting 

 

 

####################### 

### Fitting Options ### 

####################### 
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# Which objective function to minimize in fitting. A complete list of objective 
functions is described in GenFit documentation. 

# 1:  sum-of-squares function (i.e. nonlinear least squares fitting). 

# 2 chi-square function (i.e. weighted nonlinear least squares fitting) 

objfunc=1 

 

# Do not divide by initial value (at t=0) of simulation results 

divide_by_init= 0 

 

# The maximum number of generations to run. 

max_generations=75 

 

# The number of unique parameter sets simulated in first generation. 

first_gen_permutations=150  

 

# The number of unique parameter sets simulated in a generation. 

permutations=75 

 

# Do bootstrapping 

bootstrap= 100 

bootstrap_chi= 30 

 

 

# The mutation probability and mutation factor for free parameters. 

mutate=default 0.2 0.2 

 

# The free parameters. These are generated on a random log scale between 
numbers indicated. 

loguniform_var=GRB2_total__FREE__ 1E4 1E6 

loguniform_var=SHC1_total__FREE__ 1E4 1E6 

loguniform_var=kdephos1068__FREE__ 0.5 5 

loguniform_var=kphos1068__FREE__ 0.5 5 
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Configuration file for model in Chapter 5 

 

############# 

### PATHS ### 

############# 

 

# The directory to which job output will be written 

output_dir=/home/esc1987/Modeling/BioNetFit_v1.1_with_Simulators/output/ 

 

# The BioNetGen executable 

# bng_command=Simulators/BNG2.pl 

bng_command= 
/home/esc1987/Modeling/BioNetFit_v1.1_with_Simulators/Simulators/BNG2.pl 

 

# ESC added the following two lines because NFsim was not able to run 
simulations 

# NFsim for Cygwin 

#nfsim_dir=/home/esc1987/Modeling/NFsim_v1.11/bin 

#nfsim_command=NFsim_x86_64-cygwin 

#nfsim_command=NFsim_i686-cygwin 

 

# The model file to be used in fitting simulations 

model=/home/esc1987/Modeling/BioNetFit_v1.1_with_Simulators/CHO_EGFR/fit
_v1_17/180301_HeLa_EGFR_Cbl_Ub.bngl 

 

 

# The experimental data to be fit 

exp_file=/home/esc1987/Modeling/BioNetFit_v1.1_with_Simulators/CHO_EGFR/
fit_v1_17/dose_resp.exp 

exp_file=/home/esc1987/Modeling/BioNetFit_v1.1_with_Simulators/CHO_EGFR/
fit_v1_17/dose_resp_no_coop.exp 
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####################### 

### General Options ### 

####################### 

 

# The job name 

job_name=fit_v1_17 

 

# Whether or not to generate plots for best-fit outputs 

make_plots=0 

 

# Number of simulations to run in parallel. 

# Change parellel_count to the number of CPU cores on your machine for 
increased performance. 

parallel_count=6 

 

# Kill a job and continue without it if  process runs longer than walltime. Adjust if 
needed. 

max_walltime=10:00 

 

# Delete files that are no longer needed to save disk space 

# Property not working 

delete_old_files=1 

 

# Ask if you want to overwrite existing existing job output. In this case disable 
ask, that way you can do batch fitting 

 

 

####################### 

### Fitting Options ### 

####################### 

 

# Which objective function to minimize in fitting. A complete list of objective 
functions is described in GenFit documentation. 

# 1:  sum-of-squares function (i.e. nonlinear least squares fitting). 
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# 2 chi-square function (i.e. weighted nonlinear least squares fitting) 

objfunc=1 

 

# The maximum number of generations to run. 

max_generations=75 

 

# The number of unique parameter sets simulated in first generation. 

first_gen_permutations=150 

 

# The number of unique parameter sets simulated in a generation. 

permutations=75 

 

# Do bootstrapping 

bootstrap= 6 

bootstrap_chi= 35 

 

# Do not divide by initial value (at t=0) of simulation results 

divide_by_init= 0 

 

 

# The mutation probability and mutation factor for free parameters. 

mutate=default 0.2 0.2 

 

 

# The free parameters. 

# These are scaling factors generated on a random scale between numbers 
indicated. 

#random_var=alpha_pY1045__FREE__ 4 20 

#random_var=alpha_Ub__FREE__ 20 100 

random_var=alpha_pY1045__FREE__ 1 100 

random_var=alpha_Ub__FREE__ 6 60 
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# These are generated on a random log scale between numbers indicated. 

loguniform_var=Kd_CE__FREE__ 0.1E-6 10.0E-6 

loguniform_var=Kd_CG__FREE__ 0.1E-6 10.0E-6 

loguniform_var=kc__FREE__ 5E5 5E8 

loguniform_var=kub__FREE__ 0.001 0.1 

loguniform_var=kdeub__FREE__ 0.001 0.1 
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